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Perturbation theory treatment of pseudorotation in cyclic-N3
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A relatively simple treatment using perturbation theory is proposed to describe spectrum of pseudoro-
tational states in cyclic-N3. The purpose is to develop an analytical expression that could be used to
fit the experimentally determined spectrum of cyclic-N3, with purpose of identifying this molecule in
the laboratory and deriving parameters of its potential energy surface directly from the experimental
data. The perturbation theory expression derived in this work is used to fit the spectrum calculated
numerically in the previous work [D. Babikov and B. Kendrick, J. Chem. Phys. 133, 174310 (2010)].
It is found that the second order of perturbation theory works well, giving a very good fit of the spec-
trum, with the rms deviation of only 0.26 cm−1. Analysis reveals that important characteristics of
the potential energy surface, such as equilibrium geometry and pseudorotation barriers, are directly
related to the features of spectrum, such as splittings, and can be readily derived from experimental
data, when those become available. © 2011 American Institute of Physics. [doi:10.1063/1.3563634]

I. INTRODUCTION

Cyclic-N3 is a Jahn–Teller molecule that exhibits the
seam of conical intersections in the equilateral triangle (D3h)
configurations.1 Due to the Jahn–Teller distortion effect,
the minimum energy point on the potential energy surface
(PES) of cyclic-N3 occurs at the isosceles triangle (C2v)
configuration and, due to the symmetry, there are three such
minima around the conical intersection.1 Such behavior
is quite typical and is found in several other triatomic
Jahn–Teller molecules.2–4 What makes cyclic-N3 interesting
and quite special is the fact that three transition states
(between those three minima) occur at very low energies,
allowing the motion of nuclei between the three energetically
equivalent wells. For comparison, the conical intersection
in cyclic-N3 is at 4599.28 cm−1 above the minimum, while
energy of the transition state points is only 311.33 cm−1. The
vibrational zero-point energy (ZPE) of cyclic-N3 is 1325.67
cm−1, which is more than enough to go over the transition
states easily without any vibrational excitation, by just being
in the ground vibrational (highly delocalized) quantum state.5

The potential energy surface of cyclic-N3, presented in
Fig. 1, reflects these properties and looks like a circular
channel surrounding the conical intersection. The depth and
shape of this channel changes very little as it encircles the
conical intersection. Wave functions of the vibrational states
formed in this channel exhibit highly delocalized shapes.5

The motion of nuclei along the channel in Fig. 1 repre-
sents a mode of vibration, but is called a pseudorotational
motion because it leads to rotation in space (i) of the princi-
pal axes of inertia of the molecule and (ii) of the dipole mo-
ment of the molecule, even if the overall rotational state of the
molecule is isotropic, J = 0.6 In the case of cyclic-N3 we can
talk about a weakly hindered or an almost free pseudorotation,
since the pseudorotational barriers are so low.

a)Author to whom correspondence should be addressed. Electronic mail:
dmitri.babikov@mu.edu.

The spectrum of vibrational states of cyclic-N3 was com-
puted in the earlier work.5 Two sets of results were pre-
sented: one based on the standard Born–Oppenheimer (BO)
approximation and second based on the generalized Born–
Oppenheimer (GBO) treatment, where the geometric phase
effect was included in calculations of the vibrational states
using gauge theory.7 This effect originates from the property
of electronic wave function to change sign when the motion
of nuclei encircles the conical intersection.8 The total wave
function, which is the product of {electronic}×{vibrational},
must remain smooth and continuous in the entire configu-
ration space, which is possible only if the vibrational wave
function also changes sign (as vibrational motion encircles
the conical intersection).

In cyclic-N3, where the conical intersection is in the D3h

configuration, effect of the geometric phase can be rational-
ized using a relatively simple picture. The motion that en-
circles conical intersection is precisely the pseudorotational
motion discussed above (see Fig. 1). Thus, geometric phase
affects the progression of pseudorotational states only, having
essentially no effect on states of the other two modes (bend-
ing and breathing). If the geometric phase is neglected, the
pseudorotational wave functions are smooth and continuous
around the conical intersection and can be described by in-
teger values of the pseudorotational quantum number m.6 If
the geometric phase is included, the pseudorotational wave
functions change sign and correspond to half-integer values
of m. For example, without the geometric phase the ground
state of cyclic-N3 would be an m = 0 state of symmetry A1 at
1310.65 cm−1, described by a nodeless donutlike wave func-
tion encircling the conical intersection.5 When the geometric
phase is included, the ground state of cyclic-N3 is a degener-
ate m = 1/2 state of E-symmetry at 1325.67 cm−1. Its wave
function has one node and changes sign as vibrational motion
encircles the conical intersection.5, 6 The shift of the ground
state by ∼15 cm−1, the changes of its symmetry, and degen-
eracy can be regarded as effects of the geometric phase. For
the excited states of cyclic-N3, such shifts are larger and reach
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FIG. 1. A two-dimensional slice of the potential energy surface of cyclic-N3
through the point of conical intersection. Direction of the pseudorotational
motion along φ is shown by arrow.

a few hundred wave numbers at energies close to the conical
intersection.5 It should be emphasized that in nature only the
states with half-integer values of m do exist; the states with in-
teger values of m were computed for methodological purpose
only (in order to see differences).

Intensities of the infrared (IR) transitions between the vi-
brational states of cyclic-N3 have been computed recently.6

It was found that the pseudorotational mode is several or-
ders of magnitude brighter compared to the bending and
breathing modes. The brightest transitions correspond to �m
= ±1 and, in typical experimental conditions, should in-
volve ten lower energy states, up to m = 9/2. Some of these
states (m = 1/2, 5/2, 7/2) are exactly degenerate pairs of
E-symmetry, while others (m = 3/2, 9/2) are nondegener-
ate states of symmetries A1 and A2 with nonzero splittings
(see Table I). These splittings should manifest in the IR-
spectrum of cyclic-N3 and may help to identify this myste-
rious molecule in the laboratory.9–15 It is clear that a rigorous
theoretical treatment of the pseudorotational motion, includ-
ing the geometric phase effect, is essential for the accurate
theoretical prediction of the IR-spectrum.

It is also desirable to have better intuitive understand-
ing of the origin of these splittings and develop the means
of relating the magnitudes of these splittings to features of
the potential energy surface of the molecule. With this pur-
pose in mind we decided to focus on qualitative and quantita-
tive analysis of the lower pseudorotational states of cyclic-N3

(calculated numerically in the previous work5, 6) and develop
a transparent theoretical treatment for them. In addition to the
ten states listed in the previous paragraph, our analysis incor-
porates some states calculated without inclusion of the geo-
metric phase, namely, m = 0, 1, 2, 3, and 4. These states do
not occur in nature but they carry accurate information about
the potential energy surface, which is important methodolog-
ically. For example, a pair of states with m = 3 (symmetries

A1 and A2) show significant splitting, ∼23 cm−1 (see Table I).
The states with m = 1, 2, and 4 are exactly degenerate.

Figure 1 shows the spectrum of 19 pseudorotational
states used in this paper. Some of them, three pairs indicated
by arrows in Fig. 1, show splittings in the range between 1
and 100 cm−1. The value of splitting decreases as energy of
states increases. In some cases the energy of symmetric state
m+ is below the energy of the antisymmetric state m− (e.g.,
m = 3/2, 9/2), but there are cases when the order is reversed
(e.g., m = 3). Six pairs of excited pseudorotational states in
Fig. 1 are doubly degenerate. At lower energies the spectrum
in Fig. 1 is near parabolic, typical to a rotor, but at higher ener-
gies (especially those outside of the range shown in Fig. 1) the
spectrum flattens out toward a linear, typical to harmonic os-
cillator. Can we explain all these features in a simple intuitive
manner? Can we reproduce them accurately using a simple
model spectroscopy-kind Hamiltonian?

The paper is organized as follows. In Sec. II we describe
the Hamiltonian and develop the theoretical framework (per-
turbation theory) used to derive analytical expression for the
pseudorotational spectrum of cyclic-N3. In Sec. III this ex-
pression is used to fit the spectrum of pseudorotational states
calculated numerically in the previous work. Conclusions are
given in Sec. IV.

II. PERTURBATION THEORY TREATMENT OF
PSEUDOROTATION

Using the adiabatically-adjusting principal-axes hyper-
spherical (APH) coordinates16 the Hamiltonian operator for
nuclear motion of a nonrotating triatomic molecule (J = 0) is
expressed as17

HJ=0 = − 1

2μρ5

∂

∂ρ
ρ5 ∂

∂ρ
− 2

μρ2

1

sin 2θ

∂

∂θ
sin 2θ

∂

∂θ

+ 2

μρ2 sin2 θ

(
−i

∂

∂φ

)2

+ V (ρ, θ, φ), (1)

where μ = √
m1m2m3/(m1 + m2 + m3) is a three body re-

duced mass. Numerical calculations of vibrational eigen-
states in cyclic-N3 for energies up to the conical intersection
(∼4600 cm−1) using this exact Hamiltonian were reported
in our earlier work.5, 6 Here we develop a simplified ana-
lytic approach to characterize and better understand the lower
part of this spectrum, important for the IR-spectroscopy.
We assume that the vibrational excitation is low, and the
three vibrational modes are coupled weakly. Our earlier nu-
merical results5, 6 support this assumption. Among the three
APH coordinates, the hyper-radial coordinate ρ describes the
symmetric stretching motion, or the breathing mode, while
the hyperangle θ describes the bending mode. In the majority
of molecules the motion along the hyperangle φ is restricted,
by the potential energy surface V (ρ, θ, φ), to the vicinity of
the equilibrium position and corresponds to the asymmetric
stretching mode [one example is a molecule of ozone, O3

(Ref. 18)]. However, in the cyclic-N3 the large amplitude mo-
tion along the hyperangle φ is allowed (by zero-point en-
ergy), which leads to the transformation of the asymmetric
stretching mode into the pseudorotational motion around the
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TABLE I. The spectrum (in cm−1) of pseudorotational states in cyclic-N3 computed numerically (from Ref. 5) and its fit using analytical expressions of
various orders of the perturbation theory. δE is the residual deviation of the exact result from the fit.

Numerical Zeroth order First order Second order Third order

m and symmetry E E δE E δE E δE E δE

0 1310.65 1306.05 4.60 1306.05 4.60 1310.72 − 0.07 1310.32 0.33
1/2± 1325.67 1324.66 1.01 1324.66 1.01 1325.54 0.13 1325.47 0.20
1± 1364.95 1375.47 − 10.52 1375.47 − 10.52 1365.15 − 0.20 1362.51 2.44
3/2+ 1401.22 1452.45 − 51.23 1402.22 − 1.00 1400.99 0.23 1405.88 − 4.66
3/2− 1501.68 1452.45 49.23 1502.68 − 1.00 1501.45 0.23 1503.38 − 1.70
2± 1560.68 1551.07 9.61 1551.07 9.61 1561.12 − 0.44 1556.16 4.52
5/2± 1668.88 1667.87 1.01 1667.87 1.01 1669.00 − 0.12 1669.46 − 0.58
3− 1787.52 1800.14 − 12.62 1788.86 − 1.34 1787.43 0.09 1788.02 − 0.50
3+ 1810.07 1800.14 9.93 1811.41 − 1.34 1809.98 0.09 1810.58 − 0.51
7/2± 1944.56 1945.74 − 1.18 1945.74 − 1.18 1944.14 0.42 1944.07 0.49
4± 2101.70 2102.97 − 1.27 2102.97 − 1.27 2102.25 − 0.55 2101.71 − 0.01
9/2+ 2269.93 2270.44 − 0.51 2269.22 0.71 2269.84 0.09 2269.94 − 0.01
9/2− 2272.38 2270.44 1.94 2271.67 0.71 2272.29 0.09 2272.39 − 0.01

conical intersection,1 described by −π < φ < +π . As the
pseudorotational motion encircles the conical intersection the
other two coordinates, ρ and θ , change very little and remain
approximately equal to their equilibrium values, ρeq and θeq

(see Fig. 1). Thus, the pseudorotational mode can be approx-
imately separated from the other two modes and the Hamil-
tonian of Eq. (1) can be transformed into the following one-
dimensional operator:

H1D = ZPE − 1

2Im

∂2

∂φ2
+ V (ρeq, θeq, φ), (2)

where ZPE represents the zero-point energy of the breathing
and bending modes due to the first two terms in the fully
dimensional expression of Eq. (1). Here we focus on the
pseudorotational excitation with no breathing and/or bending
excitation, so the ZPE is just a constant number. It can be eas-
ily estimated from the numerical results of Ref. 5. Using the
harmonic oscillator model for the first excited breathing and
bending states of cyclic-N3, we obtain ZPE = 1182.3 cm−1.
Using a more sophisticated six-parameter Dunham expansion
for these two modes gives the value just slightly higher: ZPE
= 1202.1 cm−1.

Note that in Eq. (2) we introduced the pseudorotational
moment of inertia as

Im = μρ2
eq sin2 θeq

4
. (3)

At the basic level the value of Im can be estimated
using parameters of the minimum on the potential energy
surface. Using the values of ρeq = 3.4656 bohr and tan(θeq/2)
= 0.1079 from Ref. 5 and the reduced mass of cyclic-N3, μ

= 8.083amu, we obtain the value of Im = 9.172 × 10−3 cm.

A. Zero-order model

At the zeroth order of theory we simply neglect the pseu-
dorotational barriers on the PES, which makes the PES flat
for the motion encircling the conical intersection, i.e., con-

stant and equal to zero. This is justified by the fact that ener-
gies of these barriers, 311.3 cm−1, are small compared to the
zero-point energy of the vibrational motion.6 Barriers to pseu-
dorotation will be treated as a perturbation at the next level of
theory.

With the kinetic energy V = 0, the zeroth-order (unper-
turbed) Hamiltonian is

H (0) = ZPE − 1

2Im

∂2

∂φ2
= ZPE + Ĵ 2

m

2Im
, (4)

where we introduced operator of the pseudorotational an-
gular momentum as Ĵm = −i∂/∂φ. Hamiltonian of Eq. (4)
describes a one-dimensional rotor or a pseudorotor to be
exact. Note that except for the constant ZPE shift, this Hamil-
tonian corresponds to a textbook example of “particle-on-a-
ring” problem with known analytic solutions to energies

E (0)
m = ZPE + m2

2Im
, (5)

and wave functions∣∣m+〉 = 1√
π

cos(mφ), (6a)

∣∣m−〉 = i√
π

sin(mφ), (6b)

where the pseudorotational quantum number m is introduced.
Note that normalization condition for the m = 0 function re-
quires that |0〉 = 1/

√
2π . Except the m = 0 case, the zeroth-

order solutions are exactly doubly degenerate, with one wave
function in each pair being symmetric and one being antisym-
metric. The m = 0 function is, obviously, symmetric.

The spectrum of Eq. (5) contains two parameters and,
in principle, one can attempt to fit the spectrum of Fig. 2
with Eq. (5). The results are presented in Sec. III and, as
one might expect, the quantitative agreement is quite poor al-
though the overall near-parabolic dependence is qualitatively
reproduced. We found that a significant improvement is ob-
tained if instead of a single parameter Im the three parameter
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FIG. 2. Lower part of the pseudorotational progression of states of cyclic-
N3. Both BO and GBO states are included (integer and half-integer values
of m, respectively). Arrows indicate the A-symmetry states where the split-
tings are observed. Circles indicate energies computed numerically in Ref. 5;
pluses indicate analytical fit to numerical data using the perturbation theory
of second order.

expansion,

Im = I0 + I1m + I2m2, (7)

is substituted into Eq. (5). Such expansion takes into account
the fact that moment of inertia of the pseudorotor can slightly
increase as the pseudorotational excitation increases. This ef-
fect is similar to the familiar centrifugal distortion, but may
also include the effect of distortion of the PES shape, which
is not a perfect ring at higher excitation energies. For the over-
all approach to be correct and the description of the spectrum
to be accurate, we should require I0 � I1 � I2 as a conver-
gence criterion.

Another obvious deficiency of Eq. (5) is the absence of
splittings of the states of A-symmetry. One can say that the
zeroth-order theory does not differentiate between the A- and
E-symmetry states, simply because the zero-order potential V
= 0 has no threefold symmetry (of the actual PES) built in.

B. First-order correction

The perturbation to the zeroth-order potential is de-
scribed as a sum of terms

V (φ) =
∑

n

V [n](φ) =
∑

n

Vn
1 − cos nφ

2
, (8)

where {Vn} is a set of suitable numbers. Since the po-
tential energy surface is threefold symmetric, only the
terms with n = 3, 6, 9, etc., are allowed in Eq. (8). The
first term with n = 3 creates three equivalent minima
on the PES separated by three pseudorotation barriers,
making the pseudorotation hindered at the first order
of theory. Necessity of the terms with n = 6 and n
= 9 will be discussed below. Again, for convergence one
should require |V3| � |V6| � |V9|, etc.

The matrix elements of the perturbation operator in the
basis of zeroth-order wave functions, H (0)

mm ′ , are separately
computed analytically for each term in the sum of Eq. (8) and

can be summarized in the following form:

〈m+|V [n]|m ′+〉 = Vn/2, if m = m ′, (9a)

= −Vn/4, if m = m ′ ± n, (9b)

= −Vn/4, if m + m ′ = n. (9c)

〈m−|V [n]|m ′−〉 = Vn/2, if m = m ′, (10a)

= −Vn/4, if m = m ′ ± n, (10b)

= +Vn/4, if m + m ′ = n. (10c)

The special important case is

〈0|V [n]|m+〉 = −√
2Vn

4
, if m = n. (11)

All other combinations of the indexes m, m′, and n lead
to zero matrix elements due to cancellation of the integrand.
All matrix elements between the symmetric and antisymmet-
ric functions 〈m−|V [n]|m ′+〉 vanish due to symmetry. These
matrix elements are computed using standard table integrals
of trigonometric functions and trigonometric relations. In the
literature they have been computed and used before.19

The first-order correction to energies requires the diago-
nal matrix elements only, m = m′. Thus, for majority of sym-
metric and antisymmetric states (exceptions are discussed fur-
ther) only the expressions of Eq. (9a) or (10a), respectively,
should be applied, leading to the constant shift by Vn/2 for all
values of m and n (all states and all terms of perturbation).

However, for every given n there exists one value of
m = n/2 (integer or half-integer) such that the condition
m + m ′ = n is also satisfied, simultaneously with m = m′

condition. Consequently, the contribution from Eqs. (9c) and
(10c) should also be included. One of those comes with a
negative sign, 〈m+|V [n]|m+〉 = −Vn/4 in Eq. (9c), while the
other comes with a positive sign, 〈m−|V [n]|m−〉 = +Vn/4 in
Eq. (10c), leading to the splitting by the value of Vn/2 of the
symmetric and antisymmetric states with m = n/2. For exam-
ple, the m = 3/2 states will split due to V3, the m = 3 states
will split due to V6, and the m = 9/2 states will split due to V9,
etc. So, at the first order of theory the states of A-symmetry
split, while the states of E-symmetry remain exactly degener-
ate. It is important that the median value of the shift for each
pair of the split states equals to Vn/2, same as the shift for the
degenerate states.

In a concise form these results can be written as follows:

E (1)
m = H (0)

mm =
∑

n

Vn

2

[
1 − δm,n/2

1

2
s

]
. (12)

Here, s = 1 for the |m+〉 states, while s = −1 for the |m−〉
states; the standard Cronicker delta-symbol is used. One can
interpret this result in the following way: The first-order cor-
rection shifts the entire spectrum (every m) by the same value
of

∑
n Vn/2, but also splits the pairs of degenerate states, each

individually by the value of V2m/2. Since only V3, V6, V9, etc.,

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



114305-5 Pseudorotation in cyclic-N3 J. Chem. Phys. 134, 114305 (2011)

are present in the expansion of Eq. (8), the splitting occurs
only for m = 3/2, 3, 9/2, etc., states.

Analysis of the spectrum presented in Table I shows that
the first order of perturbation theory is qualitatively consis-
tent with the numerical results. The values of splittings are
�3/2 = 100.46 cm−1, �3 = −22.55, and �9/2 = 2.45 cm−1

(for the states m = 3/2, 3, and 9/2, respectively), which gives
us information about the magnitudes of parameters Vn in the
cyclic-N3. Using V2m = 2�m we obtain quick estimates for
V3 = 200.92 cm−1, V6 = −45.10 cm−1, and V9 = 4.90 cm−1.
Note that the value of V6 is negative, simply because the |3−〉
state lies below the |3+〉 state. We also see that the condition
|V3| � |V6| � |V9| is well satisfied.

C. Second-order correction

At the second order of theory the nonzero off-diagonal
elements of H (0)

mm ′ will contribute to the correction and we
have to identify all such nonzero interactions for every state.
The derivations are not very complicated but are somewhat
tedious. We will only summarize our procedure using Fig. 3.
The main idea here is that due to a given term V [n] in the per-
turbation potential of Eq. (8) every state |m〉 interacts with at
most two states: |m ′〉 = |m ± n〉. This is shown schematically
in Fig. 3 by the bows connecting each state to the other states;
majority of states |m〉 are connected to two |m ′〉 states: the
|m − n〉 and |m + n〉 states. Contributions of different V (n)

terms are shown separately in Fig. 3; the integer and half-
integer values of m are also separated for clarity. Thus, the
matrix elements of Eqs. (9b) and (10b) should be included,
which leads to a “general pattern” of the second-order correc-
tion in the form of

E (2)
m �=n/2 =

∑
m ′ �=m

|H (0)
mm ′ |

E (0)
m − E (0)

m ′

= |H (0)
m,m−n|

E (0)
m − E (0)

m−n

+ |H (0)
m,m+n|

E (0)
m − E (0)

m+n

=
∑

n

(
Vn

4

)2 Im

m2 − (n/2)2
. (13)

One can see, however, that the expression of Eq. (13)
is singular when m = n/2. Such cases correspond to m < n,
when the |m − n〉 state does not exists and only one matrix
element, corresponding to the |m + n〉 state, can be included.
This leads to a special expression for the m = n/2 cases

E (2)
m=n/2 = |H (0)

m,m+n|
E (0)

m − E (0)
m+n

=
∑

n

(
Vn

4

)2 Im

−n2
. (14)

Several such cases are indicated in Fig. 3 by empty
circles.

Furthermore, the case m = n is also special, because
m ′ = m − n = 0 and |m ′〉 = |0〉. The point here is that one
state of the pair, the symmetric state |m+〉, will interact with
|0〉 state according to Eq. (11), while the other, the antisym-
metric state |m−〉, will not due to symmetry. As a result, the
|m+〉 state will be shifted up by 2(Vn/4)22Im/m2compared

m= 0 1 2 3 4 5 6 7 8 9 10 11 12

V3

1 3 5 7 9 11 13 15 17 19 21 23

BO

GBO

V6

V9

V3

V6

V9

2 2 2 2 2 2 2 2 2 2 2 2m= – – – – – – – – – – – –

FIG. 3. Schematic representation of interactions between pseudorotational
states (labeled by m) due different terms Vn in the perturbation potential of
Eq. (8). The integer (BO) and half-integer (GBO) cases are shown separately.
Dots represent states, while bows represent interactions. The main “pattern”
of interaction is m′ = m ± n (solid bows) and majority of states interact with
two other states. Empty circles indicate rare states that interact with only
one other state. Dashed bows indicate interactions with the m′ = 0 state re-
sponsible for splittings (at the first order of theory) of the symmetric and
antisymmetric states of the A-symmetry.

to the corresponding |m−〉 state, which will result in ap-
pearance of another kind of splittings at the second order of
theory. (Note that both states do interact with the upper state
m ′ = m + n to the equal extend.) Since we have only integer
values on n, this splitting will affect only the states with
integer m, for example, at the second order the |3+〉 and |3−〉
states will gain extra splitting due to V3, etc. It is possible to
show that the median value of energy for a pair of such split
states will conform to the same general pattern of Eq. (13).
Several such cases are indicated in Fig. 3 by dashed bows
connecting m = n states to the m ′ = 0 state.

Finally, for a given n, several states with m < n interact
with the states m ′ = n − m, m ′ �= m, according to Eqs. (9c)
and (10c). Such interactions create irregularities in the pattern
of bows in Fig. 3, mostly in the regions of small values of m.
For example, the V3 creates interaction between m = 1 and
m ′ = 2, but also between m = 1/2 and m ′ = 5/2. Although
such cases are treated separately, the final result appears to
conform to the general expression given by Eq. (13).

All together these effects can be combined in the follow-
ing final expression:

E (2)
m =

∑
n

(
Vn

2

)2 Im

4n2

×
(

δm,n2s +
{

1
(m/n)2−(1/2)2 , if m �= n/2

−1, if m = n/2

)
.

(15)

We see that the second-order correction plays a very im-
portant role because it introduces the m-dependent shifts of
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individual states, while the first-order correction gives only
the m-independent shift of the entire zeroth-order spectrum
by a constant number. Note that the second-order correction
affects the splittings of states with integer values of m only,
i.e., affects only the splittings of the BO states.

D. Third-order correction

The third order of theory uses ideas of the first and second
orders. For the purpose of brevity we skip the derivations and
give the final result

E (3)
m = −H (0)

mm

∑
m ′ �=m

|H (0)
mm ′ |2(

E (0)
m − E (0)

m ′
)2

= −
∑

n

(
Vn

2

)3 I 2
m

2n4

⎛
⎜⎝δm,n2s +

[
1 − δm,n/2

1

2
s

]

×

⎧⎪⎨
⎪⎩

(m/n)2 + (1/2)2

[(m/n)2 − (1/2)2]2,
if m �= n/2

1/2, if m = n/2

⎞
⎟⎠ .

(16)

This correction includes additional m-dependent shifts of
all states as well as splittings of all A-symmetry states with
both integer and half-integer values of m.

III. DATA FIT AND ANALYSIS OF RESULTS

At the third order of theory we obtain the following ex-
pression for the spectrum:

Em = E (0)
m + E (1)

m + E (2)
m + E (3)

m . (17)

This expression uses Eqs. (5), (12), and (14)–(16) and as-
sumes the expansions of Eqs. (7) and (8). In this section
we try to fit the numerical spectrum of Table I with the an-
alytical expression (17) by varying the values of parame-
ters. If we want to reproduce splittings of the states up to m
= 9/2 we must include the terms up to V [9] in the expan-
sion of Eq. (8). This gives us seven fitting parameters: ZPE,
I0, I1, I2, V3, V6, and V9. The data in Table I contain 13
points to fit. Due to the complexity of Eqs. (14)–(16) we could
not use any standard software package to carry out the fit.

We wrote our own nonlinear fitting code that employs itera-
tive procedure of the Levenberg–Marquardt method described
in the Numerical Recipes.20 The derivatives ∂ Em/∂(ZPE ),
∂ Em/∂ I0, ∂ Em/∂ I1, ∂ Em/∂ I2, ∂ Em/∂V3, ∂ Em/∂V6, and
∂ Em/∂V9 needed for this method were obtained by analyti-
cal differentiation of Eq. (17) with Eqs. (5), (12), and (14)–
(16) and Eqs. (7) and (8). For the purpose of brevity we do
not present these expressions here, but our FORTRAN code is
available for download to all interested readers.21 For the ini-
tial values of fitting parameters we used the estimated values
of ZPE, I0, V3, V6, and V9 given in Sec. II. For the initially un-
known values of I1 and I2 we set I1 = I0/10 and I2 = I0/100.
We also checked and found that the final results are insensitive
to the initial values chosen. In all the cases less than 30 iter-
ations were enough to obtain the converged results. All data
points were given equal weights in the fitting procedure.

Table I summarizes results of our fitting using various
orders of theory, from zeroth order (four-parameters fit, since
all Vn = 0) to the third order. Our first conclusion is that the
results of all orders of theory are consistent and qualitatively
similar. They all follow the trend of numerical data. The
zeroth-order fit shows no splittings as expected, while the first
order reproduces the values of all three splittings perfectly
well. The best fit is obtained by the second-order expression.
The fact that the third order of perturbation theory gives
result inferior to the second order is well known. We did
not attempt the fourth order of theory simply because the
second-order result is good enough. The maximum deviation
of the second-order fit from the numerical results is found for
the state m = 4 and is only 0.55 cm−1. The rms deviation of
the second-order fit is only 0.26 cm−1.

Table II summarizes the final (converged) fitting param-
eters for various orders of theory. The values of converged
fitting parameters ZPE, I0, V3, V6, and V9 are, in fact, close to
the values obtained from simple estimates in Section II. We
also see that the I0 � I1 � I2 condition is fulfilled for all or-
ders of theory. The overall contribution of the I2 term is very
small, so that there is no reason to include the higher order
terms. Note that the values of I0, I1, and I2 remain unchanged
when we go from the zeroth-order theory to the first-order the-
ory. This reflects the fact that the first-order correction shifts
the entire spectrum as a whole (and splits the A-symmetry
states) without changing the overall shape of the spectrum.
The second-order correction significantly affects the value of
V6 (because it changes the splitting of the m = 3 state), leaving

TABLE II. The values of fitting parameters for analytical representation of the pseudorotational spectrum of cyclic-N3 at various
orders of the perturbation theory.

Zeroth order First order Second order Third order

ZPE, cm−1 1306.05 1225.70 1228.06 1233.13
V3, cm−1 0.00 200.92 200.92 195.37
V6, cm−1 0.00 − 45.10 − 23.91 − 29.23
V9, cm−1 0.00 4.90 4.90 4.90
I0, cm 6.230 × 10−3 6.230 × 10−3 7.377 × 10−3 6.815 × 10−3

I1, cm 9.807 × 10−4 9.807 × 10−4 6.178 × 10−4 8.895 × 10−4

I2, cm − 7.102 × 10−6 − 7.101 × 10−6 2.444 × 10−5 − 8.690 × 10−6

χ2, cm−2 5539.03 235.67 0.88 52.23
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the values of V3 and V9 unchanged and equal to those of the
first-order theory. Then, the values of V3 and V6 change when
we go from the second to the third order, while the value of
V9 remains the same. It appears that the value of V9 is insen-
sitive to the third-order correction simply because the effect
of the third order (and probably of all higher orders) is negli-
gible for this excited state. This feature is consistent with the
general property of the perturbation theory—effect of the per-
turbation is higher for the lower energy states and becomes
negligible at high energies. Thus we conclude that the value
of V9 is completely defined by the first-order theory, i.e., di-
rectly by the splitting of the m = 9/2 states: �9/2 = 2.45 cm−1

and V9 = 2�9/2 = 4.90 cm−1.
Table II also gives the values of the χ2 deviation that

characterizes quality of the nonlinear fit.20 Here we see again
that the second order of theory gives the best description. The
third order, although is worse than the second order, is much
better than the first order, which is attributed, of course, to the
m-dependent shifts of states in the theories beyond the first
order. The quantitative success of the second-order expres-
sion demonstrated here suggests that this formula can be con-
fidently used for the analysis of the experimental data. Results
of the second-order fit are plotted in Fig. 2 (pluses) together
with numerical data (circles) and are basically indistinguish-
able from them at the scale of Fig. 1.

IV. CONCLUSIONS

In this work, using relatively simple tools of the pertur-
bation theory, we were able to reproduce the pseudorotational
spectrum of the cyclic-N3 obtained in the previous work us-
ing very sophisticated numerical methodology.5 All features
of the spectrum are reproduced quantitatively and become
qualitatively transparent. Thus, the states of E-symmetry
are exactly degenerate, while states of A-symmetry split
(except the ground state m = 0). This is due to the fact that
the PES is threefold symmetric, which creates perturbation
only in the states with m = 3/2, 6/2, 9/2, etc. The value
of splitting decreases as energy of state increases, which is
a general property of the perturbation effect. Order of the
nondegenerate m = 3 states is reversed, which is attributed to
the negative sign of the V6 term in the perturbation. At low en-
ergies the spectrum is near parabolic, as a spectrum of a rotor.
Increase of the pseudorotational excitation leads to distortion
of the molecular shape and increase of the pseudorotational
moment of inertia, which leads to flattening of the spectrum at
high energies.

Obtaining the values of ZPE, I0, I1, and I2 parameters
requires numerical nonlinear fitting of the data, while other
parameters can be obtained immediately from the values of
splittings. For example, the value of V3 is simply a factor of 2

greater than the splitting of m = 3/2 states. The value of V9

is simply a factor of 2 greater than the splitting of states m
= 9/2. The sign of V6 is predicted to be negative; its accurate
determination requires second order of perturbation theory.

Overall, the fit of accurate numerical data by the model
Hamiltonian is excellent, which gives us reason to believe that
it should also be possible to fit experimental data, when those
become available, in order to derive parameters of the pseudo-
rotational Hamiltonian (ZPE, I0, I1, I2, V3, V6, and V9) from
the experiment and identify cyclic-N3 in the laboratory.

ACKNOWLEDGMENTS

This work was supported by the Air Force Office of Sci-
entific Research under Grant No. FA9550-09-1-0604. Scott
Reid at Marquette University is acknowledged for many fruit-
ful discussions. This research used resources of the National
Energy Research Scientific Computing Center, which is sup-
ported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.

1D. Babikov, P. Zhang, and K. Morokuma, J. Chem. Phys. 121, 6743
(2004).

2T. C. Thompson, D. G. Truhlar, and C. A. Mead, J. Chem. Phys. 82, 2392
(1985).

3M. Keil, H.-G. Krämer, A. Kudell, M. A. Baig, J. Zhu, W. Demtröder, and
W. Meyer, J. Chem. Phys. 113, 7414 (2000).

4B. K. Kendrick, Phys. Rev. Lett. 79, 2431 (1997).
5D. Babikov, B. Kendrick, P. Zhang, and K. Morokuma, J. Chem. Phys. 122,
44315 (2005).

6D. Babikov and B. Kendrick, J. Chem. Phys. 133, 174310 (2010).
7B. K. Kendrick and R. T. Pack, J. Chem. Phys. 106, 3519 (1997).
8B. K. Kendrick, Int. J. Quantum. Chem. 64, 581 (1997).
9V. A. Mozhayskiy, D. Babikov, and A. I. Krylov, J. Chem. Phys. 124,
224309 (2006).

10D. Babikov, V. A. Mozhayskiy, and A. I. Krylov, J. Chem. Phys. 125,
84306 (2006).

11N. Hansen, A. M. Wodtke, S. J. Goncher, J. Robinson, N. Sveum, and D.
M. Neumark, J. Chem. Phys. 123, 104305 (2005).

12P. Samartzis, J. J.-M. Lee, T.-T. Ching, C. Chadhuri, Y. T. Lee, and A. M.
Wodtke, J. Chem. Phys. 123, 051101 (2005).

13P. Samartzis, J. J.-M. Lee, T.-T. Ching, C. Chadhuri, Y. T. Lee, and A. M.
Wodtke, J. Chem. Phys. 126, 041101 (2007).

14P. Samartzis and A. M. Wodtke, Int. Rev. Phys. Chem. 25, 527
(2006).

15P. Samartzis and A. M. Wodtke, Phys. Chem. Chem. Phys. 9, 3054
(2007).

16R. T. Pack and G. A. Parker, J. Chem. Phys. 87, 3888 (1987).
17B. K. Kendrick, R. T. Pack, R. B. Walker, and E. F. Hayes, J. Chem. Phys.

110, 6673 (1999); and references therein.
18D. Babikov, B. Kendrick, R. B. Walker, R. T. Pack, P. Fleurat-Lesard, and

R. Schinke, J. Chem. Phys. 118, 6298 (2003).
19A. S. Huber, R. D. Gordon, S. A. Reid, and J. D. McDonald, J. Chem. Phys.

97, 2338 (1992).
20W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numer-

ical Recipes, 3rd ed. (Cambridge University Press, 2007).
21See supplementary material at http://dx.doi.org/10.1063/1.3563634 for de-

scription and source files of our fitting code.

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.1780158
http://dx.doi.org/10.1063/1.448333
http://dx.doi.org/10.1063/1.1308091
http://dx.doi.org/10.1103/PhysRevLett.79.2431
http://dx.doi.org/10.1063/1.1824905
http://dx.doi.org/10.1063/1.3495952
http://dx.doi.org/10.1063/1.473449
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)64:5<581::AID-QUA9>3.0.CO;2-S
http://dx.doi.org/10.1063/1.2204602
http://dx.doi.org/10.1063/1.2335437
http://dx.doi.org/10.1063/1.1948381
http://dx.doi.org/10.1063/1.1993590
http://dx.doi.org/10.1063/1.2433723
http://dx.doi.org/10.1080/01442350600879319
http://dx.doi.org/10.1039/b704782g
http://dx.doi.org/10.1063/1.452944
http://dx.doi.org/10.1063/1.478574
http://dx.doi.org/10.1063/1.1557936
http://dx.doi.org/10.1063/1.463125
http://dx.doi.org/10.1063/1.3563634

