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The ground and electronically excited states of cyclic N3
+ are characterized at the equilibrium D3h

geometry and along the Jahn-Teller distortions. Lowest excited states are derived from single
excitations from the doubly degenerate highest occupied molecular orbitals !HOMOs" to the doubly
degenerate lowest unoccupied molecular orbitals !LUMOs", which give rise to two exactly and two
nearly degenerate states. The interaction of two degenerate states with two other states eliminates
linear terms and results in a glancing rather than conical Jahn-Teller intersection. HOMO-2
→LUMOs excitations give rise to two regular Jahn-Teller states. Optimized structures, vertical and
adiabatic excitation energies, frequencies, and ionization potential !IP" are presented. IP is estimated
to be 10.595 eV, in agreement with recent experiments. © 2006 American Institute of Physics.
#DOI: 10.1063/1.2204602$

I. INTRODUCTION

Interest in homonuclear triatomic molecules has a long
history. This is the smallest nonlinear system that can have a
non-Abelian point group symmetry containing irreducible
representations of the order higher than one, which results in
symmetry required degeneracies between some electronic
states at high symmetry geometries !D3h or equilateral tri-
angle" and the intersections between the corresponding po-
tential energy surfaces !PESs".

According to the Jahn-Teller !JT" theorem,1–3 high sym-
metry intersection points in nonlinear systems are not sta-
tionary points on PESs, that is, degenerate states follow first
order JT distortions to a lower symmetry, which lifts the
degeneracy. The linear dependence of states’ energies near
the intersection gives rise to singularity points on adiabatic
PESs. More precisely, the theorem states that for any geom-
etry with symmetry required degeneracy between the elec-
tronic states there exists a nuclear displacement along which
the linear derivative coupling matrix element between the
unperturbed states and the difference between the diagonal
matrix elements of the perturbation are not required to be
zero by symmetry. The theorem does not guarantee the inter-
section in real physical problems and the above vibronic
terms can become zero due to additional symmetries, prop-
erties of the potential, or other reasons. For example, as men-
tioned in the original paper, the energy splitting can be neg-
ligible if the orbital dependence on the displacement is weak,
as in the case of lone pairs.

An interesting situation arises when such JT pair inter-
acts with other closely lying states, as it happens in cyclic

N3
+. In this case the overall energy dependence at the inter-

section point becomes purely quadratic and high symmetry
configurations can become stationary points on adiabatic
PESs.

In triatomics, degenerate PESs usually form a conical
intersection !CI" extensively characterized over the years for
a variety of systems.4,5 An important feature of such inter-
section is that the real electronic wave function calculated
within the Born-Oppenheimer approximation gains a phase,
i.e., a sign change, along any path on the PES, which en-
circles a conical intersection and thus contains the singularity
point.6–9 This geometric phase has a profound effect on the
nodal structure of the vibrational wave functions, the order
of vibrational states, and the selection rules for the vibra-
tional transitions.10,11

A common motif in these systems is an unpaired elec-
tron in one of the doubly degenerate molecular orbitals
!MOs" in the ground electronic state. Alternatively, CIs can
be formed by the excited states derived from electron transi-
tions between doubly degenerate and non-degenerate orbit-
als, e.g., nondegenerate highest occupied molecular orbitial
!HOMO" and doubly degenerate lowest unoccupied molecu-
lar orbital !LUMO" in NO3.

Similar to many other X3 systems, the cyclic N3 radical
features CI in the ground state,12 with unusually strong geo-
metric phase effect that changes the nodal structure of the
vibrational wave function and the ordering of vibrational
levels.11

Cyclic N3 was described as a metastable molecule ten
years ago,13 which was confirmed by later calculations.14,15

The first experimental evidence of cyclic N3 was obtained by
Wodtke and co-workers,16–18 who reported the cyclic N3 pro-
duction in the ClN3 photodissociation and measured its ion-a"Electronic mail: krylov@usc.edu
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ization threshold.18 These experiments motivated recent the-
oretical studies of N3, as well as the present work targeting
the cyclic N3

+ ground and excited states, in order to facilitate
the interpretation of photoelectron experiments. In contrast
to the neutral, only limited information is available about the
cation states.19

The cyclic N3 cation is a closed shell molecule of D3h
symmetry with doubly degenerate HOMO and LUMO. Thus,
the lowest excited states of each multiplicity are almost qua-
druply degenerate !with two exactly degenerate states" and
exhibit JT-like behavior.

A similar quadruple set of the excited states occurs in
other systems with doubly degenerate HOMO and LUMO,
for example, in benzene,20 a rather popular JT system. Inter-
estingly enough, most theoretical studies of the JT effects in
benzene were focused on the benzene cation, which exhibits
the usual JT conical intersection. As for the neutral molecule,
most of the computational studies reported only the vertical
excitation energies21,22 for these four almost degenerate ex-
cited states.

The effect of other closely lying electronic states on JT
intersections has been discussed by several researchers.23–25

For example, Perrin and Gouterman23 analyzed the !E+A"
! e vibronic coupling problem. In their treatment, degenerate
E states that form CI were considered not as isolated states
!e.g., as in the E ! e vibronic coupling problem26" but as
being coupled to a closely lying A state. Similar interactions
were characterized in Na3,24 where the interpretation of the
experimental data required the inclusion of the nondegener-
ate A1 state and treating all three states as a pseudo-Jahn-
Teller system.

This work presents a comprehensive analysis of the cy-
clic N3

+ excited states. We found that two HOMO→LUMO
exactly degenerate states do not form a familiar A2 /B1 coni-
cal intersection because of the presence of the two other
closely lying HOMO→LUMO states of the A2 and B1 sym-
metries. Nondegenerate states are coupled to the degenerate
ones forming an !E+A+B" ! e vibronic problem, and the
energy dependence on the displacement from the intersection
becomes purely quadratic, except for the points of an acci-
dental degeneracy of three states. Such glancing intersection
is similar to Renner-Teller glancing intersections in linear
molecules.27 It exhibits pseudo-Jahn-Teller distortions, as op-
posed to CI and the usual JT effect characterized by the
linear dependence of the energy along the displacements, and
has no geometric phase effect in the electronic wave
functions.7

The structure of the paper is as follows. The next section
describes computational details. Molecular orbital frame-
work and the nature of low-lying states is presented in Secs.
III and IV, respectively. The formal analysis of the !E+A
+B" ! e JT problem is presented in Sec. V. Section VI dis-
cusses ionization potential and photoelectron spectrum. Our
final remarks are given in Sec. VII.

II. COMPUTATIONAL DETAILS

Excited state equilibrium geometries, frequencies, and
vertical and adiabatic excitation energies were calculated at

the EOM-CCSD !Refs. 28 and 29"/cc-pVTZ !Ref. 30" level
of theory with frozen 1s core orbitals. Potential energy sur-
faces of the excited states were obtained at the EOM-CCSD
level with the 6-311G* !Ref. 31" basis set. EOM-CCSD/cc-
pVTZ PESs presented in this work will be discussed in more
detail elsewhere.32 The ground state of cyclic N3

+ was char-
acterized using the CCSD model with perturbative triples
corrections, CCSD!T",33 and the cc-pVTZ !Ref. 30" basis set.

The ionization potential of cyclic N3 was calculated as
the energy difference between the neutral and the cation us-
ing the CCSD!T" total energies with the following bases:30

cc-pVDZ→cc-pVTZ→cc-pVQZ→cc-pV5Z !1s core orbit-
als were frozen". The three latter basis sets were used for the
three point basis set extrapolation CBS-3pa !Refs. 34 and 35"
of the neutral and cation total energies,

Ecc-pVXZ!X" = EBSL + be−cX,

where Ecc-pVXZ is the total energy obtained with cc-pVXZ
basis set, X denoting a cardinal number: X= %T,Q,5&, EBSL is
the extrapolated basis set limit energy, and b and c are the
fitting constants. The EOM-SF-CCSD !Refs. 36 and 37"/cc-
pVTZ equilibrium geometry of the neutral cyclic N3 and the
CCSD!T"/cc-pVTZ equilibrium geometry of the cation were
used in the IP calculations. The zero point energy !ZPE" of
neutral cyclic N3 including the geometric phase effect is
from Ref. 11. Cation’s ZPE is calculated at the harmonic
approximation at the CCSD!T"/cc-pVTZ level of theory.

EOM-EE-CCSD and EOM-SF-CCSD results were ob-
tained with the Q-CHEM !Ref. 38" ab initio package.
CCSD!T" calculations were performed with the ACES II
!Ref. 39" electronic structure program.

III. MOLECULAR ORBITAL PICTURE

The ground state equilibrium geometry of cyclic N3
+ is an

equilateral triangle !D3h" with RNN=1.313 Å. Figure 1 shows

FIG. 1. Molecular orbitals and the ground state electronic configuration of
cyclic N3

+ !equilateral triangle, D3h". Both HOMO and LUMO are doubly
degenerate. C2v labels are given in parentheses.
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MOs and the ground sate electronic configuration of N3
+,

which is a closed shell molecule with A1! !A1 in C2v" elec-
tronic wave function. MOs are derived from: !i" the sp2 hy-
bridized 2s, 2px, and 2py atomic orbitals, which form nine
molecular orbitals—three !-bonding, three !-antibonding
!!*", and three lone pair !lp" orbitals, and !ii" 2pz atomic
orbitals that form three "-like MOs. Each triple set of MOs
!i.e., !, !*, lp, or "" exhibits a similar pattern—one fully
bonding MO lies bellow two exactly degenerate orbitals.
There is no clear energy separation between the " and lp
sets. An interesting feature of this molecule is that both
HOMO and LUMO are doubly degenerate. HOMOs !lp’s"
are of e! symmetry, whereas LUMOs !"*" are of e" symme-
try. At C2v, the HOMO pair splits into a1 and b2, and
LUMO—into the a2 and b1 orbitals.

IV. LOWEST EXCITED STATES

The least symmetric configuration of a triangular mol-
ecule is Cs. We use C2v symmetry labels for the twelve low-
est excited states, which all are of either A2 or B1 symmetry
and therefore become A" at Cs. D3h labels are also given
when appropriate.

Figure 2 shows leading configurations of the ground and
the lowest excited states. Different determinants are com-
bined in configuration state functions !CSFs" that have ap-
propriate spin and spatial symmetry and represent a conve-
nient basis for describing excited states.

The lowest excited states of cyclic N3
+ are derived from

the eight possible single excitations from doubly degenerate
HOMO to doubly degenerate LUMO !lp→"*, top panel".
The symmetries of respective CSFs are given by !a1+b2"
! !a2+b1"= !A2+A2+B1+B1", and each of these can be ei-
ther a singlet or a triplet. Thus, a total of eight different CSFs
can be formed, as shown in Fig. 2 !lower panel". Labels #, $,
%, and & denote different types of CSF, whereas minus or
plus signs correspond to singlet or triplet configurations, re-

spectively. Next two singlets and triplets !' and (" are de-
rived from the excitations from nondegenerate HOMO-2 to
LUMO.

Only CSFs of the same spin and irrep can mix in the
excited state wave functions. For example, two singlet A2
states are described as linear combinations of two singlet A2
CSFs,

'!# + &" 1A2( =
1

))2 + *2
#) · '!#" 1A2( + * · '!&" 1A2($

'!# − &" 1A2( =
1

))2 + *2
#* · '!#" 1A2( − ) · '!&" 1A2($ !1"

The wave functions of two triplet '!#±&" 3A2( states can
be formed in a similar way. Likewise, four B1 states !two
singlets and two triplets" '!$±%"B1( are linear combinations
of '!$"B1( and '!%"B1( CSFs. The coefficients ) and * are
both equal to one at D3h, whereas along C2v distortions !e.g.,
along the bending normal mode" their ratio changes. In other
words, at D3h the excited state wave functions are simply a
sum or a difference of basis CSFs, and a C2v distortion col-
lapses each state into single CSF !see Fig. 3". Thus, these
CSFs represent an approximate diabatic basis. Overall, at
D3h geometries four singlet and four triplet excited state
wave functions are formed from four CSFs with *=)=1:
'!#+&" 1,3A2(, '!#−&" 1,3A2(, '!$+%" 1,3B1(, and '!$
−%" 1,3B1(. Since all CSFs are derived from the single exci-
tations between the two pairs of doubly degenerate orbitals,
the resulting states are also nearly degenerate and form a
rather complicated D3h intersection. The '!'" 1,3A2( and
'!(" 1,3B1( states derived from HOMO-2→LUMO excita-
tions do not mix at D3h geometry and form a regular JT pair.

Using D3h symmetry labels, the symmetries of the
HOMO→LUMO states are

e! ! e" → A1" + A2" + !E"" ——→
C2v

A2 + B1 + !A2 + B1" ,

!2"

i.e., among these four excited states only one A2 and one B1
state are exactly degenerate E" states forming a JT pair.

FIG. 2. Leading electronic configurations of the ground !top panel" and the
lowest excited states !lower panel". HOMO→LUMO excitations give rise
to four singlet and four triplet CSFs labeled #, $, %, and &. HOMO-2
→LUMO excitations yield two additional CSFs of each multiplicity: !'"
and !(".

FIG. 3. Changes in the excited states’ characters and potential energy sur-
faces upon distortions from an equilateral !D3h" geometry to an obtuse !left"
and an acute !right" isosceles C2v triangles.
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These degenerate states are '!#−&"A2( and '!$+%"B1(.
HOMO-2→LUMO states, !'" 1,3A2 and !(" 1,3B1, form an-
other E! JT pair. Calculated vertical excitation energies for
the 12 lowest excited states are summarized in Table I. As
explained above, only two of the four HOMO-LUMO states
are exactly degenerate; however, the order of the states is
different for singlets and triplets.

PES scans along the bending normal coordinate are
shown in Fig. 4 separately for each irrep and multiplicity.
The coordinate origin !Qb=0.0" corresponds to N3

+ at the
equilateral D3h geometry !RNN=1.313 Å", whereas left and
right wings of the plots correspond to C2v distortions. The
scale along the bending normal mode is as follows: Qb
=0.4 corresponds to +=45.3° and RNN=1.430 Å, whereas
Qb=−0.4—to +=77.2° and RNN=1.220 Å.

The ground X 1A1 state, which has D3h equilibrium ge-

ometry, is shown by the solid line and empty circles on each
plot. The lowest excited states !filled squares, triangles, and
circles" have singly occupied degenerate orbitals and un-
dergo JT distortions to C2v.

Let us first discuss the !'" 1,3A2 and !(" 1,3B1 states de-
rived from the excitations from nondegenerate HOMO-2 to
doubly degenerate LUMO !two lowest CSFs in Fig. 2".
These states are shown in the each plot in Fig. 4 by the very
top dashed line. The two singlets, !'" 1A2 and !(" 1B1, are
exactly degenerate at D3h and undergo JT distortions to C2v.
The stereographic projections of PESs using hyperspherical
coordinates40 of PESs shown in Fig. 5 reveal the similarity of
this intersection to the 2B1 / 2A2 intersection in neutral cyclic
N3.11 Transition from the acute to the obtuse triangle station-
ary points through the D3h point !i.e., along the bending nor-
mal mode" encounters a relatively high potential barrier;
however, the molecule can go around the conical intersection
with almost no barrier following the asymmetric normal
mode that corresponds to pseudorotation. The seam of this
conical intersection is along the fully symmetric stretch. The
pair of the !'"3A2 and !("3B1 triplet states follows the same
pattern, although the energy differences between the respec-
tive equilibrium geometries !EG" and the transition states
!TS" are slightly larger !see Table II", and the barrier for
pseudorotation is higher. Such A2 /B1 intersection causes the
electronic wave function to gain a phase !change of a sign"
along any path on the adiabatic PES that encircles CI.11

The four lower excited states !#, $, %, and &" show a
different and more complicated behavior, due to the double
degeneracy of initial and target MOs !Fig. 2". Instead of a JT
pair, they form a JT quartet: four almost degenerate elec-
tronic states, which are all unstable at D3h and distort to
lower symmetries. The calculated PES of this intersection is
presented in Fig. 6, and the excited state characters around
the intersection point are sketched in Fig. 3 !see also PES

TABLE I. Vertical excitation energies !eV" of the 12 lowest excited states of
cyclic N3

+ calculated at the EOM-CCSD/cc-pVTZ level of theory. Two out of
four HOMO→LUMO !#−&, $+%" and two HOMO-2→LUMO !', ("
excited states are exactly degenerate pairs at D3h. The ground state geometry
and total energy are given in Table II.

Singlets Triplets

!(" 1A2 7.669 !(" 3A2 7.014
!'" 1B1 7.669 !'" 3B1 7.014

!#−&" 1A2 5.334 !#+&" 3A2 4.333
!$+%" 1B1 5.334

!$−%" 3B1 3.950
!$−%" 1B1 5.314

!$+%" 3B1 3.921
!#+&" 1A2 4.914 !#−&" 3A2 3.921

FIG. 4. The EOM-CCSD/6-311G* potential energy surface scans along the
bending normal coordinate for the ground !X 1A1, shown on each plot" and
the excited 1A2, 1B1, 3A2, 3B1 states of cyclic N3

+ !upper left, upper right,
lower left, and lower right, respectively". Data points !squares, triangles, and
filled circles" correspond to the calculated adiabatic surfaces; dashed lines
represent approximate diabats and connect points with the same leading
character of the wave function !see Fig. 2".

FIG. 5. Adiabatic potential energy surfaces and contour plots of the !'"A2
and !("B1 singlet !left" and triplet !right" states. Polar radius and angle are
hyperspherical coordinates + and ,, which are similar to the bending and
asymmetric stretch normal mode, respectively. Stereographic projection is
taken with fixed hyperradius !overall molecular size or symmetric stretch"
-=3.262 corresponding to the cyclic N3

+ ground state equilibrium geometry.
Both surfaces feature conical !'"A2 / !("B1 intersection at D3h. Stationary
points on the surfaces are located along two C2v distortions to acute and
obtuse isosceles triangles. Energies of the transition state and the conical
intersection relative to the minima are ETS=0.05 eV, ECI=0.97 eV and
ETS=0.24 eV, ECI=1.03 eV on the singlet and tiplet !' /(" PESs,
respectively.
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cuts along C2v distortions in Fig. 4". Obviously, this is not a
quadruply degenerate intersection—only two out of the four
electronic states are exactly degenerate at D3h, as described
above. Nevertheless, all four states around the intersection
strongly interact, which results in a fascinating pattern. For
example, the intersection of the two degenerate states is
glancing rather than conical, and the energy depends only
quadratically on the displacements from the intersection
point,6,7 as explained in detail in Sec. V. Note that the sin-
glets !left panel, Fig. 3" form almost a triply degenerate in-
tersection: !$−%" 1B1 state is only 0.02 eV !Table I" lower
than the !#−&" 1A2 / !$+%" 3B1 pair. Interestingly, the order
and the character of the excited states at D3h is different for
singlets and triplets, although it becomes the same for the
geometries distant from the equilateral triangle as shown by
the labels on the left and right sides of the plots in Fig. 3.

The intersection topology is further clarified by the ad-
ditional scan along the fully symmetric stretch normal bond
Qss that corresponds to changing the overall size of the equi-
lateral triangle !Fig. 7". All four states of each multiplicity
remain close in energy along Qss, and the two exactly degen-
erate states retain their degeneracy !solid line in Fig. 7" form-
ing the seam of the glancing intersection. However, the non-
degenerate states !filled circles and squares" slightly change
their energy position relative to the glancing intersection,
which changes the order of the triplet states and even leads to
additional accidental degeneracies of the !#+&" 3A2 or !$
−%" 3B1 states with the glancing intersection at some D3h
geometries !encircled in Fig. 7".

Optimized geometries, frequencies, and adiabatic excita-

tion energies of the excited states described above are pre-
sented in Table II. As in many JT triatomics, one sheet of
!$" / !%" singlet and triplet PESs has a minimum !EG", and
another—a transition state, the later corresponding to the po-
tential barrier for pseudorotation motion between the equiva-
lent EG minima. !#" / !&" states could follow the similar pat-
tern; however, the !#" singlet and triplet states are
dissociative along the C2v distortion. If the C2v constrain is
lifted, the !#" states relax to linear structures: the !#" 1A2
assumes C.v geometry with RNN=1.178 Å, whereas the trip-
let !#" 3A2 becomes D.h with R12=1.123 Å and R23

=1.279 Å.
The shape of the # /& and $ /% PES crossings is different

from that of ' /( CI !and also from the 2B1 / 2A2 intersection
in neutral cyclic N3", as the surfaces # /& and $ /% have only
a quadratic dependence on a displacement from the intersec-
tion point. Thus, even though there are two exactly degener-
ate JT states, the intersection is glancing rather than conical
and adiabatic PESs do not have singularities.

This changes the behavior of electronic wave function in
the vicinity of the intersection: although the character of the
electronic wave function changes along the path around the
intersection, the point group symmetry remains the same,
and, therefore, the electronic wave function does not gain a
sign change. Thus, there is no geometric phase effect along
any path that stays on one of the four adiabatic PESs and
encircles this intersection,6,7 which is not surprizing, in view
of the absence of a singularity point.

TABLE II. C2v constrained optimized geometries, harmonic vibrational frequencies, and total !Etot" and adiabatic excitation !Eex" energies of the ground
!X 1A1" and the lowest excited states calculated at the EOM-CCSD/cc-pVTZ level of theory. /1, /2, and /3 are the frequencies of the symmetric stretch,
bending, and asymmetric stretch, respectively.

X 1A1 !#" 1A2 !$" 1B1 !%" 1B1 !&" 1A2 !'" 1A2 !(" 1B1

Eex !eV" 0.00 2.92 5.16 5.19 2.51 6.76 6.81
Etot !a.u." −163.423 29 −163.315 93 −163.233 79 −163.232 66 −163.331 06 −163.174 96 −163.172 89

+ !°" 60.0 37.7 56.0 62.1 92.2 52.3 66.3
RNN !Å" 1.313 1.750 1.389 1.343 1.244 1.475 1.365
Enuc !a.u." 59.237 38 55.523 43 57.234 05 57.328 02 56.139 34 55.077 21 55.364 57

/1 !cm−1" 1646 2134 1427 1401 1633
/2 !cm−1" 1108 363 823 1013 597 n/ab n/ab

/3 !cm−1" 1108 −i424 1163 −i1362 764
ZPE !kcal/mol" 5.521 3.830a 4.880 3.451a 4.280

!#" 3A2 !$" 3B1 !%" 3B1 !&" 3A2 !'" 3A2 !(" 3B1

Eex !eV" 1.15 3.85 3.82 1.94 6.04 6.28
Etot !a.u." −163.380 90 −163.281 92 −163.283 07 −163.352 13 −163.201 32 −163.192 52

+ !°" 34.1 57.0 63.3 90.9 51.9 64.4
RNN !Å" 1.910 1.360 1.322 1.249 1.473 1.372
Enuc !a.u." 50.334 01 58.090 07 57.906 82 56.091 25 55.332 35 55.522 38

/1 !cm−1" 2241 1429 1419 1603 2701 1751
/2 !cm−1" 434 889 999 599 1129 1361
/3 !cm−1" −i385 −i1010 1470 −i1366 1514 −i1669
ZPE, kcal/mol 3.570a 3.313a 5.558 3.148a 7.639 4.450a

aZPE for the transition states were calculated only for normal coordinates with real frequencies, i.e., bending and symmetric stretch.
bWe were not able to calculate frequencies for the !'" and !(" states because of the numerical instability of finite difference procedure in the vicinity of the
conical intersection.
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V. THE ANALYSIS OF THE „E+A+B…‹E PROBLEM IN
CYCLIC N3

+

The electronic Hamiltonian H=Te+U!r ,Q" can be ex-
panded as Taylor series with respect to small nuclear dis-
placements Q- from a reference high symmetry configura-
tion !Q-=0",

H = H0 + *
-

#H

#Q-
Q- + *

-,!

#2H

#Q-#Q!
Q-Q! + ¼ = H0 + V .

!3"

We truncate this expansion at linear terms and start by
solving the Schrödinger equation for Hamiltonian H0. The
perturbation V thus includes linear vibronic coupling terms
*-!#H /#Q-"Q-.1,2

Instead of taking eigenfunctions of H0 as a basis set for
a subsequent perturbative treatment, we choose to employ a
diabatic basis of HUMO→LUMO CSFs !see Fig. 2". These
CSFs are close to adiabatic states for C2v distorted geom-
etries, whereas at D3h !Q-=0" the corresponding adiabatic
states !i.e., eigenstates of H0" are the linear combinations of
CSFs, as given by Eq. !1".

We employ normal coordinates: bending Qb, asymmetric
stretch Qas and symmetric stretch Qss, which are of a1, b2,
and a1 symmetry !in C2v", respectively. We will consider Qb
and Qas, which constitute the e! degenerate vibration. The
third normal coordinate Qss describes breathing motion,
which does not lift the degeneracy between MOs and CSFs.
This mode will be discussed in the end of the section.

The matrix elements Vij of the vibronic coupling term
are

Vij = +0i'*
-

#H

#Q-
Q-'0 j( = *

-

+0i'
#U

#Q-
'0 j(Q-

= *
-

Fij
Q-Q-, !4"

where %0k& are the diabatic %!#"A2 , !&"A2 , !$"B1 , !%"B1& ba-
sis functions.

Selection rules for Fij
Q-,41 derivative or linear vibronic

coupling constant, are readily derived from the group theory
considerations. Vij is nonzero only if 1+i' ! 1Q-

! 1+'j( includes
totally symmetric irrep A1, where 1+i', 1'j(, and 1Q-

are the
irreps of the 0i, 0 j diabats and the Q- normal mode, respec-
tively. Thus, the linear vibronic coupling is nonzero between
the states of the same symmetry only along the bending nor-
mal coordinate, e.g., 1+B1' ! 1Qb!a1" ! 1+'B1(!A1. For the states
of different symmetry, i.e., A2 and B1, it is nonzero only
along the asymmetric stretch: 1+A2' ! 1Qas!b2" ! 1+'B1(!A1.
Thus, the vibronic coupling matrix elements Vij are

+0i
A2'V'0 j

A2( = Fij
QbQb,

+0i
B1'V'0 j

B1( = Fij
QbQb, !5"

+0i
B1'V'0 j

A2( = Fij
QasQas.

The H0 off-diagonal matrix elements are nonzero only
between the states of the same symmetry,

FIG. 6. !Color" PESs of the ground !X" and the first eight excited states of
cyclic N3

+. Coordinates are as in Fig. 5. Three out of four states in each
multiplicity are almost degenerate at D3h geometry, two being exactly
degenerate.

FIG. 7. EOM-CCSD/6-311G* potential energy surface
scans along symmetric stretch normal coordiante for the
lowest A2 and B1 excited states. Singlets are shown on
the left plot, triplets—on the right. Solid line shows two
exactly degenerate states the !#−&"A2 and !$+%"B1,
i.e., the seam of the intersection. Circles and squares
correspond to the nondegenerate !#+&"A2 and !$
−%"B1 states, respectively. Big circles on the right plot
show two tree-state PES intersections. RNN is a bond
length of equilateral triangle, vertical dashed line points
at the cyclic N3

+ ground state equilibrium geometry.
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+0i
A2'H0'0 j

A2( = VAA
0 ,

+0i
B1'H0'0 j

B1( = VBB
0 , !6"

+0i
B1'H0'0 j

A2( = 0.

Using Eqs. !5" and !6", the Hamiltonian in the diabatic
basis set %!#"A2 , !&"A2 , !$"B1 , !%"B1& assumes the following
form:

H!Qb,Qas"

=,
EA + kAQb VAA

0 F#$Qas F#%Qas

VAA
0 EA − kAQb F&$Qas F&%Qas

F#$Qas F&$Qas EB + kBQb VBB
0

F#%Qas F&%Qas VBB
0 EB − kBQb

- ,

!7"

where kA=F##
Qb =−F&&

Qb and kB=F$$
Qb =−F%%

Qb.
Along the bending normal mode Qb, when Qas=0, CSFs

of different symmetries are not coupled, and the Hamiltonian
!7" assumes a block diagonal form. Thus, pairs
%!#"A2 , !&"A2& and %!$"B1 , !%"B1& form two pairs of non-
crossing adiabats !see Fig. 8, compare to Fig. 3".

At D3h, i.e., when Qb=0 and Qas=0, it is required by
symmetry, Eq. !2", that one of the A2 states !UA

±" is degener-
ate with one of the B1 states !UB

±", i.e., in the example shown
in Fig. 8 the intersection condition is UA

+ =UB
+, which gives

rise to the additional condition EA+ 'VAA
0 '=EB+ 'VBB

0 '. By
shifting the energy scale such that one of the diabatic ener-
gies at the intersection is zero, this condition becomes

'VBB
0 ' = 'VAA

0 ' − EB,
!8"

EA = 0.

The coupling between the two degenerate states at !Qb
=0, Qas=0" is zero by virtue of Eqs. !5" and !6". Thus, the
derivatives of the potential energy surfaces !Ui" along the
bending coordinate !see Fig. 8" are zero,

. #Ui

#Qb
.

Qas=Qb=0
= 0, i = 1¼4, !9"

which means that the linear terms are absent and the inter-
section is glancing rather than conical.

The Hamiltonian along the asymmetric stretch Qas is ob-
tained from matrix !7" by using Qb=0 and condition !8". If
only two intersecting states are considered, the problem is
similar to the familiar conical intersection4,5 of E" degenerate
states,

H = / kAQb F#$Qas

F#$Qas kBQb
0 . !10"

However, because of the two other states A2 and B1,
which are almost degenerate with E" pair, the linear vibronic
coupling constants Fij

Qas are nonzero and the 424 full Hamil-
tonian should be considered at the first order of perturbation
theory.

This 424 problem can be solved analytically, e.g., by
using MATHEMATICA.42 The resulting !rather tedious!" ex-
pressions for eigenvalues can be differentiated, which reveals
that the eigenvalues’ derivatives along the asymmetric
stretch coordinate are also zero, similar to the derivatives
along Qb. Thus,

. #Ui

#Qas
.

Qas=Qb=0
= 0, i = 1¼4, !11"

and therefore all four potential energy surfaces !E"+A2
+B1" depend only quadratically on the displacements along
the degenerate vibration e"=Qb+Qas from D3h geometry, i.e.,
they have an extremum at the symmetric configuration. Note
that the inclusion of the second order terms in the perturba-
tion does not change the derivatives in Eqs. !9" and !11".

Thus, the intersection of four HOMO-LUMO excited
states is glancing,43–45 and all four !E+A+B" ! e vibroni-
cally coupled states follow a pseudo-Jahn-Teller distortion.
Contrary to the conical intersection case, there is no geomet-
ric phase effect along any path that encircles the intersection
point.7,24,26

The absence of linear terms can also be demonstrated by
considering 222 block of the Hamiltonian in the basis of
adiabatic JT states !i.e., two degenerate eigenstates of H0", as
elegantly shown by Pupyshev.46 The proof requires the con-
struction of complex e! and e" MOs obtained from a1 /b2
HOMOs and a2 /b1 LUMOs,

FIG. 8. The Hamiltonian in the diabatic !left" and adiabatic !right" repre-
sentations along the bending normal mode Qb. Since the Hamiltonian is
block diagonal, the pairs of states of the same symmetry do not interact with
each other and form two noncrossing pairs !see text".
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e±! =
1
)2

!a1 ± ib2" ,

!12"

e±" =
1
)2

!− b1 ± ia2" .

In this basis, two degenerate adiabatic states 0E+
and

0E−
are simply single e+!→e−" and e−!→e+" excitations,

01,3E+
=

1
)2

!'e+!# e−!# e−!$ e−"$( ± 'e+!$ e−!# e−!$ e−"#(" ,

!13"

01,3E−
=

1
)2

!'e+!# e+!$ e−!# e+"$( ± 'e+!# e+!$ e−!$ e+"#(" .

The above can be derived by either transforming the original
adiabatic states into the new MO basis or by symmetry con-
siderations. In terms of diabatic CSFs from Fig. 2, these
states are

01,3E±
=

1
)2

#!'!#"A2( − '!&"A2(" ± i!'!$"B1( + '!%"B1("$ .

!14"

As clearly seen from Eq. !13", 0E+
is doubly excited

with respect to 0E−
. Neglecting the changes in MOs upon

small geometric distortion, the perturbation operator #U /#Q
is a one-particle operator, and, therefore, the corresponding
matrix element is zero. There is no linear dependence in
+0E±

'#U /#Qas'0E±
( and +0E±

'#U /#Qb'0E±
( diagonal terms

because of the symmetry.46 Note that the double degeneracy
of both initial and target MOs !e.g., HOMO and LUMO" is
required for the two respective electronic states to be doubly
excited with respect to each other. Thus, both proofs show
that the cancellation of linear terms occurs due to the pres-
ence for of four interacting CSFs.

The change of the overall size of cyclic N3
+ under D3h

constraint corresponds to the symmetric stretch !triangle
breathing" Qss !a1" motion, with Qb=Qas=0. The E" or A2
+B1 pair of states remains degenerate at any point along Qss.
Both zero and first order coupling terms between the states
of different symmetries are identically zero by symmetry,
which means that the A2 states do not interact with the B1
states along Qss, as well as along the Qb normal mode of the
same a1 symmetry. However, the derivative coupling be-
tween two states of the same symmetry, e.g., '!#"A2( and
'!&"A2(, is nonzero along the Qss and can accidentally cancel
out the zero order coupling term VAA, which results in a triple
degeneracy !E"+A2". By setting Qss to be equal to zero at
such triple degeneracy point and taking into account condi-
tions !8", Hamiltonian !7" assumes the following form:

, kAQb 0 F#$Qas F#%Qas

0 − kAQb F&$Qas F&%Qas

F#$Qas F&$Qas EB + kBQb − EB

F#%Qas F&%Qas − EB EB − kBQb

- . !15"

In this case, both derivatives #Ui /#Qb and #Ui /#Qas for
i=1¼4 at Qas=Qb=0 are nonzero, and the intersection has a
conical shape in !Qas ,Qb" coordinates: triple conical inter-
section and a nondegenerate fourth surface with the singular-
ity in the origin !Qas=0, Qb=0". Triple CIs, which are not
defined by the high nuclear symmetry, were characterized by
Matsika and Yarkony47,48 as an accidental intersection of two
seams of conical intersections. In triatomics, this type of CI
was found, for example, in H2+H.49 In cyclic N3

+, however,
the triple CI is formed by two crossing seams of A" /A" coni-
cal intersection !in Cs" and the A2 /B1 glancing intersection
!along D3h".

To conclude, interactions of a JT pair of states with other
states remove linear terms and change the intersection from
conical to glancing thus eliminating geometric phase effects.

VI. IONIZATION POTENTIAL AND PHOTOELECTRON
SPECTRUM

The cyclic N3
+ ionization potential was calculated by

CCSD!T" with the basis set extrapolation, as described in
Sec. II. The results are presented in Fig. 9. Energies of both
the neutral and the cation were calculated with four different
basis sets. The energy difference extrapolated to the basis set
limit is 10.52 eV. The zero point energy !ZPE" of the cation
in the harmonic approximation is 0.239 eV !see Table II",
and for the neutral cyclic N3 E-symmetry vibrational ground
state—0.164 eV.11 Thus, with the ZPE correction, the adia-
batic IP00 is 10.595 eV. This result supports the experimental
measurement of IP for cyclic N3

+ !Ref. 18" of
10.62±0.07 eV.

The IP of the linear N3 radical is 11.06 eV.50 Therefore,
the difference in IPs of the cyclic and linear N3 is only
0.44 eV, which is comparable to the vibrational energy of
possibly hot photofragments. Thus, a more detailed analysis
of photoelectrons is required to unambiguously assign the
observed product as cyclic N3. Below we discuss general
features of the cyclic N3 photoelectron spectrum. The calcu-
lation of the spectrum and the comparison with the experi-
ments will be reported in a forthcoming paper.32

FIG. 9. IPee !not ZPE corrected" calculated as a difference between neutral’s
and cation’s CCSD!T" total energies in the basis set limit. ZPE corrected IP,
IP00, is 10.595 eV.
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The lowest electronic states of the cation that are bright
in a photoelectron experiment are those that are derived from
neutral cyclic N3 by one electron ionization: the ground
X 1A1 and !#", !$", !(" excited states, as well as !%", !&", and
!'" for the photoionization from 2B1 !EG" and 2A2 !TS",
respectively. Since neutral’s vibrational wave function is de-
localized alonog the pseudorotation coordinate over 2B1 and
2A2 states,12 both sets of the cation’s excited states can be
produced in one electron photoionization.

Thus, all lowest excited states discussed in this work can
contribute to the photoelectron spectrum, and, since they are
close in energy and strongly coupled, the calculation of the
full photoelectron spectrum becomes a challenging problem.

The Franck-Condon factors, however, are very different
for many of the states. For example, the lowest excited
states, !#" 1A2 and !#" 3A2, are almost dissociative along C2v
distortion !see Table II" and collapse to linear equilibrium
structures. Because of this geometry difference, the Franck-
Condon factors for these # states and neutral N3 are small,
and they should produce only a background signal in the
photoelectron spectrum. All other excited states are at least
3.8 eV higher than the cation ground state. Thus, the lower
energy part !Eex314 eV" of the photoelectron spectrum can
be well described as a transition from the 2B1 / 2A2 pair of
states of the neutral to the ground X 1A1 state of the cation.
Such calculation should include the geometric phase effect in
neutral N3 and will be presented elsewere.32

VII. CONCLUSIONS

We described 12 lowest excited states of cyclic N3
+. Eight

lowest states !four singlets and four triplets" derived from
single electronic excitations from doubly degenerate HOMO
to doubly degenerate LUMO are close in energy at the
ground state equilibrium geometry !D3h" and exhibit a com-
plicated Jahn-Teller behavior. Only two out of four states in
each multiplicity are exactly degenerate and form an inter-
section seam along the symmetric stretch normal mode.
However, this intersection is glancing rather than conical,
because it is affected by interactions with two other nonde-
generate states. Thus, adiabatic PESs do not have singulari-
ties at the intersections point, unless accidental triple degen-
eracy occurs. Therefore, these glancing intersections do not
cause a geometric phase effect, which occurs in cyclic N3
ground state or any other system with CI.

Stationary points of the excited states PES were also
characterized. Cyclic N3 ionization potential was estimated
to be 10.595 eV, in a good agreement with recent experi-
ments. The photoelectron spectrum of cyclic N3 in the en-
ergy range Eex314 eV is predicted to be dominated by the
transitions between the lowest electronic states of neutral N3
and the ground state of the cation.
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