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An accurate theoretical prediction of the vibrational spectra for a pure nitrogen ring (cyclic-N3)
molecule is obtained up to the energy of the 2A,/?B, conical intersection. A coupled-channel
approach using the hyperspherical coordinates and the recently published ab initio potential energy
surface [D. Babikov, P. Zhang, and K. Morokuma, J. Chem. Phys. 121, 6743 (2004)] is employed.
Two independent sets of calculations are reported: In the first set, the standard Born—Oppenheimer
approximation is used and the geometric phase effects are totally neglected. In the second set, the
generalized Born—Oppenhimer approximation is used and the geometric phase effects due to the
D5, conical intersection are accurately treated. All vibrational states are analyzed and assigned in
terms of the normal vibration mode quantum numbers. The magnitude of the geometric phase effect
is determined for each state. One important finding is an unusually large magnitude of the geometric
phase effects in the cyclic-Nj: it is ~100 cm ™' for the low-lying vibrational states and exceeds 600
cm” ! for several upper states. On average, this is almost two orders of magnitude larger than in the
previously reported studies. This unique example suggests a favorable path to experimental

validation. © 2005 American Institute of Physics. [DOI: 10.1063/1.1824905]

I. INTRODUCTION

The previously unknown energetic form of nitrogen has
been recently predicted theoretically’ and produced
experimentally.z‘5 This is a stable ring-N; isomer (having the
form of an isosceles triangle) called cyclic-N; hereafter.
Cyclic-Nj is metastable with respect to dissociation to the
ground state N(*S) +N, (AE=—1.4¢eV), which is spin for-
bidden. Furthermore, recent results® show that the doublet-
quartet surface crossings that must be traversed for dissocia-
tion lie about 1 eV above the cyclic-N;3 minimum. Thus,
cyclic-Nj is very stable and carries a lot of energy; it is an
excellent new candidate for technological applications in en-
ergy storage, high nitrogen explosives, and clean propellants.
It is worth mentioning that the nitrogen resources on our
planet are practically limitless.

The cyclic-N3 is a new molecule and experimental stud-
ies of it have been somewhat ahead of theory. Valuable the-
oretical guidance for designing experiments and for inter-
preting experimental results has been notably lacking during
the last couple years. This paper is the second one in a series
of theoretical papers we intend to publish which focus on
cyclic-Nj. In the first paper,” we presented an accurate ab
initio potential energy surface (PES) for cyclic-N53. Cyclic-
Nj is a Jahn—Teller molecule that exhibits a conical intersec-
tion between two of its potential energy surfaces at the D5,
(equilateral triangle) configuration.®” That conical intersec-
tion causes the equilibrium geometry to distort off the D,
geometry. In the present paper, we report calculations of the
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vibrational states of cyclic-N; with particular emphasis on
the associated geometric phase effects.

The origin of the geometric phase dates back to 1963
when Herzberg and Longuet-Higgins® showed that a Born—
Oppenheimer electronic wave function changes sign for any
closed path in the nuclear parameter space which encircles a
conical intersection of two electronic PESs. The geometrical
interpretation of the sign change was first recognized by
Mead and Truhlar’ in 1979. They showed that the sign
change can be expressed in terms of the ‘“magnetic flux” due
to a pseudomagnetic solenoid centered at the degeneracy
point. Later, Mead'® called this effect the ““molecular
Aharonov—-Bohm” effect. In 1984, Berry11 showed that the
sign change was a special case of a more general geometric
phase factor often referred to as “Berry’s phase.” Due to the
universal nature of this effect, Berry’s influential paper gen-
erated widespread interest which continues to this day.

As noted by Ham,'? probably the first experimentally
verified example of a geometric phase effect was in crystal
defects with strong Jahn—Teller coupling where the lowest
vibronic state was shown to have E symmetry instead of A,
or A,.'® The first experimental verification of this ordering
was for Cu’" in MgO using electronic paramagnetic reso-
nance (EPR).' This ordering is a direct consequence of the
geometric phase. If it were not properly included, the oppo-
site ordering would be predicted (i.e., the lowest vibronic
state would be A, or A,).

The theoretical treatment of geometric phase effects in
molecular spectra date back to Longuet—Higgins et al.'> who
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correctly included the geometric phase in a model of a Jahn-
Teller distorted molecule. The first calculations to treat a real
molecule (Li;) were performed by Gerber and
Schumacher.'® The vibrational spectra of Cuy both in an ex-
cited electronic state and in its ground state have also been
computed.'”!® As expected, the lowest vibrational state for
these systems was found to be of E symmetry. Significant
geometric phase effects were also found in the vibrational
spectra of Na;(X).'”?° The geometric phase shifts many of
the vibrational energies (relative to a calculation which ig-
nores the geometric phase). These energy shifts result in a
reordering of many of the vibrational levels which can be
confirmed experimentally. Similar calculations for Na; in an
excited electronic state found significant geometric phase ef-
fects which were confirmed experimentally.21 A similar treat-
ment for Li; also confirmed the effects of the geometric
phase in the vibrational spectra associated with both the
ground and an excited electronic state.”? Other theoretical
studies of geometric phase effects in molecular spectra can
be found in Refs. 23-26. Geometric phase effects have also
been reported in quantum reactive scattering calculations.
The first calculation of this kind dates back to 1990 by
Lepetit and Kuppermann.”’ For a detailed review of these
kinds of calculations see the recent review articles by
Kendrick.”®* More discussion of geometric phase effects in
molecules can also be found the in the review articles by
Mead® and Yarkony.?!

In the generalized Born—Oppenheimer (GBO) approach
of Mead and Truhlar,9 the double-valued real electronic wave
function is multiplied by a complex phase factor. This phase
factor is chosen to exactly cancel the sign change associated
with the double-valued real electronic wave function so that
the resulting complex electronic wave function is single val-
ued. However, the effective Schrodinger equation for the
nuclear motion acquires a vector potential (or gauge poten-
tial) and is more difficult to solve. In recent years this
method of incorporating the geometric phase effects into ac-
curate quantum mechanical calculations has been applied to
several inelastic and reactive scattering problems>~>® as well
as to calculations of the vibrational spectra in the Naj tri-
atomic molecule.'” In the present paper we follow this ap-
proach too.

In Sec. II of the paper we briefly review the properties of
the cyclic-N3 PES and demonstrate how the electronic wave
function of cyclic-N3 changes sign when the nuclear motion
encircles the conical intersection, which is the origin of the
geometric phase effects. In Sec. III we review both the stan-
dard BO and the generalized BO approaches to calculations
of the vibrational spectra. In Sec. IV we describe numerical
techniques used in this work to solve the Schrodinger equa-
tion for the nuclear motion. The results of the BO and the
GBO calculations are presented in Secs. V and VI, respec-
tively. In Sec. VII we highlight the geometric phase effects
found in cyclic-N3, and some conclusions are presented in
Sec. VIIL

Il. POTENTIAL ENERGY SURFACE

In this work we use a sophisticated adiabatic PES for the
ground doublet electronic state of the cyclic-N;.” It is based
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on extensive electronic structure calculations using the MOL-
PRO 2002.6 suite of ab initio programs.>’ Dunning’s standard
correlation consistent polarized valence triple-{ basis set
augmented with diffuse functions (aug-cc-pVTZ) was used
and the internally contracted multireference configuration in-
teraction method with all singles and doubles (MRCISD)
wave functions® was employed. To all MRCISD energies
the multireference version of the Davidson correction® was
applied that can be denoted as MRCISD(Q). In the MR-
CISD(Q) calculations, the reference wave function was ob-
tained from the corresponding full valence CASSCF calcu-
lations consisting of 15 electrons distributed in 12 molecular
orbitals, and only the 1s orbitals of N atoms were kept dou-
bly occupied in all configurations while the remaining
15 electrons were correlated, denoted as MRCISD(Q)
(15e/120) aug-cc-pVTZ.

As in Ref. 7, we describe the positions of nitrogen nuclei
in the cyclic-N; triatomic using adiabatically adjusting
principal-axes hyperspherical (APH) coordinates.**' 1In
terms of the usual mass scaled internal Jacobi coordinates
(r,R,a) the APH coordinates (p,6,¢) are defined as follows:

p=VR*+r?, pel0;=], (1)
V(R*—r?)2+ (2Rr cos a)?

tan 6= ( 2Rrs(ina , 0€[0;7/2], (2)
2Rr cos

tangbzw, del0;27]. 3)

Qualitatively, the value of the hyperradius p is a measure of
the overall “size” of a triatomic molecule. Hyperangles 6
and ¢ describe changes in its “‘shape.”

Often used with APH coordinates is the stereographic
projection,®® which is a convenient way to plot a two-
dimensional (2D) slice of the PES at a fixed value of the
hyperradius p, while 6 and ¢ are allowed to vary. This cor-
responds to variation of the shape of the triatomic keeping its
overall size constant. In such a 2D plot the energy is a func-
tion of two Cartesian variables X and Y defined as

X=cos ¢ tan(6/2), 4)
Y=sin ¢ tan( 6/2), (5)

where —1=X=<1, —1<Y=1. With such a choice the center
of the plot (X=0, Y=0) corresponds to #=0 and describes
the triatomic in D5, geometry (equilateral triangle). A dis-
tance of any point from the center of the plot is determined
by the 6 variable only:

VX2 +Y?=tan(6/2). (6)

Points at the unit circle X>+ Y?>=1 correspond to 6= 6,,,,
=m/2 and describe linear configurations of the N5 triatomic
system (not studied in this paper). Stereographic projections
will be used many times throughout the following section.
Using APH coordinates we have set up a dense (p,6,¢)
grid in three dimensions. In Ref. 7 we had 18 points in p
covering the range from 3.19 to 3.93 a.u. 18 points in 6
covering the range from zero to tan(6/2)=0.25; and seven
points covering the whole range of ¢ (from zero to 60°).
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Electronic structure calculations were performed for all ge-
ometries on this grid, which resulted in the 2286 ab initio
points determined in Ref. 7. Convergence studies performed
in this work have shown that the vibrational wave function
of N; tunnels deep into the classically forbidden region and
the grid should be slightly extended onto the range of small
p values as well as onto the range of large € values. Conse-
quently, we have added to the grid of Ref. 7 an additional p
point at p=3.18 a.u. and an additional # point at tan(6/2)
=0.29, which resulted in 260 additional ab initio points on
3D-grid computed for this work. Finally, an accurate three-
dimensional interpolant has been constructed between the ab
initio points using the tensor product B-cubic spline
representation.*?

All features of the PES were described in detail in Ref.
7. In this paper, we give only a brief summary of the PES’s
major features. The crossing of the potential energy surfaces
for >A, and 2B, electronic states in cyclic-N5 forms a seam
along the p axis (=0, ¢=0), which is the D3, symmetry
line in the APH coordinates. Therefore, for each value of p
the conical intersection is at the origin (X=0, Y=0) and is
surrounded by a deep attractive well, as shown in Fig. 1(a).
At the bottom of the well there are three equilibrium minima
at ¢={0; 120°; 240°} separated by the three low energy tran-
sition states at p={60°; 180°; 300°}, as seen in Fig. 1(b). The
three minima correspond to the three possible permutations
of nitrogen nuclei within the cyclic-Nj3 triatomic. They have
the same energy and this energy is taken as the energy ref-
erence point throughout the paper. Relative to it the energy
of the transition state points or pseudorotation barrier is only
311.33 cm™'. The energy of the conical intersection depends
upon the size of equilateral triangle and is a smooth function
of the hyperradius p. It exhibits a minimum at p=3.4070 a.u.
where the energy is 4599.28 cm™'. This point will be re-
ferred as the minimum energy point of the conical intersec-
tion.

In the APH coordinates, all geometries of an X5 tri-
atomic molecule with ¢=nX60° (n is an integer) belong to
the C,, point group (isosceles triangles). Among them, the
points at ¢={0; 120°; 240°}, which include the three minima,
represent the acute triangle geometries. In the case of cyclic-
N; these geometries exhibit 2B, symmetry of the ground
electronic state. Alternatively, the points at ¢={60°;
180°; 300°}, which include the three transition state points,
represent the obtuse triangle geometries and exhibit 2A,
symmetry of the ground electronic state. This is visualized in
Fig. 1(b) by the symmetry map superimposed with the con-
tour plot of cyclic-N; PES. The 2B, states are symmetric
with respect to the permutation of the two nitrogen nuclei
that form the base of the isosceles triangle, while the 2A2
states are antisymmetric with respect to this operation. In the
APH coordinates, the permutation symmetry corresponds to
reflection through the ¢p=nX60° lines and this is illustrated
in Fig. 2, left frame. Note: an observer can encircle the coni-
cal intersection by, for example, following the hyperangle ¢
from 0° to 360° and keeping p and 6 fixed. Alternatively, one
may think about encircling the conical intersection by fol-
lowing the minimum energy path that connects all the three
minima and the three transition state points. Let us start from
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FIG. 1. (Color) A surface plot for the stereographic projection of the cyclic-
N; PES. The value of the hyperradius is fixed at p=3.4070 a.u. The conical
intersection is seen at (x=0, y=0). The vertical scale shows the energy in
eV. (b) A contour map of (a). Contour lines are given from 0 to 0.16 eV
(roughly equal to energy of the BO ground vibrational state) in steps of 0.02
eV. The symbol O indicates points of minima and the symbol @ indicates
transition state points. A “shape legend” is given in the bottom. Three solid
and three dashed lines cross at the point of conical intersection and indicate
C,, geometries with 2A, and ?B, electronic state symmetries, respectively.

the minimum at ¢=0 where the electronic wave function is
symmetric (2B,) and assume, for definiteness, that it is posi-
tive on both sides of the ¢=0 line (see Fig. 2). Going from
the minimum at ¢=0 to another one at ¢»=120° an observer
will see that the symmetry of the electronic wave function
changes from ?B; at ¢=0 to A, at $=60° and back to >B,
at ¢=120°. Since the A, electronic wave function at ¢=60°
is antisymmetric it changes sign. As a result, the >B; elec-
tronic wave function is required to be negative on both sides
of ¢=120° line, i.e., it changes sign compared to that at
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FIG. 2. (Color) Illustration of the sign change in the Born—Oppenheimer electronic wave function. Panels on the left and right sides of the figure represent
a contour plot of the cyclic-N3 PES [as in Fig. 1(b)] but with only two contour lines: one contour line is given at 0.16 eV, which is also the highest energy
contour line in Fig. 1(b). It forms two concentric loops of similar shape at the inner and outer parts of the well. The second contour line is given exactly at
the energy of the transition state [0.0386 eV, see also Fig. 5(b) in Ref. 7]. This contour line exhibits a Mobius-like shape with the nodes at the transition state
points and serves here as a reflection of the electronic wave function symmetries. Namely, the wave function is symmetric across the 2B, lines and is
antisymmetric across the 2A, lines. This is shown with red and blue colors and is indicated as (+/+) or (+/—) across each C,, symmetry line. However, the
BO wave function (left panel) exhibits an abrupt sign change seen as a sharp red-blue boundary at ¢=0. This problem is removed by multiplying the real BO
wave function by a complex phase factor (middle panel) which exhibits a similar sign change at ¢=0. The resultant GBO wave function (right panel) is
complex and single-valued everywhere. Note: the signs on the diagrams of the phase factor and the GBO wave function are given only across the ¢={0, 120°,

240°) lines, where they are both real.

¢=0. Going further from ¢=120° to ¢=240° the symmetry
again changes from 2B, to 2A, at ¢=180° and back to 2B,
and one more sign change occurs as observer reaches
¢$=240°: the *B, electronic wave function is required to be
positive on both sides of the ¢=240° line. Further, at
¢=300° the symmetry of the electronic wave function
changes one more time to %A, and it acquires one more sign
change when the observer reaches ¢»=360° (returns to ¢=0),
so that the 2B, electronic wave function is now required to
be negative on both sides of the $p=360° (=0) line. Since
we started encircling the conical intersection from the as-
sumption that the wave function is positive here, one may
say that the electronic wave function is required to be double
valued at ¢=0, which is shown as a sharp red-blue boundary
and indicated as * in Fig. 2 (left frame). Therefore, as an
observer encircles the conical intersection in the APH coor-
dinates, the electronic wave function changes symmetry six
times and the sign change of the electronic wave function
occurs three times, leading to one net sign change for any
complete 0=<<¢=<360° loop s(x). It is important to note that
the actual electronic structure calculations are performed
only in the 0=<¢=60° range and then the PES data are re-
flected to cover all values of ¢. Thus, no problems associated
with double-valuedness are encountered in the electronic
structure calculations. However, the double-valuedness of
the electronic wave function must be taken into account in
order to obtain the correct nuclear motion wave functions
(see Sec. III).

. NUCLEAR SCHRODINGER EQUATION

To incorporate the geometric phase effects in the calcu-
lations of the vibrational spectra we follow the method pro-
posed by Truhlar and Mead,’ which was then developed fur-

ther by Kendrick and Pack®**® and successfully applied to
accurate calculations of vibrational states.'®?%* It requires a
generalization of the standard Born—Oppenheimer approxi-
mation and we briefly review it here for completeness.

The molecular Schrodinger equation is given by

HY =EV,y, (7)

where W, is the total molecular wave function, H is the total
molecular Hamiltonian, and E is the total energy. In the case
of triatomic molecules (such as cyclic-N3) a set of six coor-
dinates is necessary to describe the motion of nuclei relative
to the center of mass. Three of these are internal coordinates
that depend on the three internuclear distances and are cho-
sen here to be the hyperspherical coordinates x=(p,#,¢)
introduced in the preceding section. The remaining three
nuclear coordinates are the rotational coordinates and are
taken as the usual Euler angles x=(a,,7y) that specify ori-
entation of the body frame relative to the space frame. The
whole set of six nuclear coordinates is denoted as x
=(x,%).

One can separate the center-of-mass motion and express
H in the space frame as

ﬁZ
H=——V*+h(r;x), ®)

2p
where the Laplacian is six dimensional with respect to the
six nuclear coordinates x=(x,x), u is the three-body re-
duced mass: w= mmyms/(m;+my+ms;), and h(r;x) is
the electronic Hamiltonian that depends only parametrically
on internal nuclear coordinates x, r denotes all of the elec-
tronic coordinates.

In the present treatment we neglect all electronic angular

momentum (spin and orbital) so that the space-frame elec-
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tronic eigenfunctions ¢, depend parametrically on the inter-
nal nuclear coordinates x and can be chosen real orthogonal
with real eigenvalues V,,. As usual, we assume that the elec-
tronic part of the problem

h(r;x) @, (r;x)=V,(x)¢,(r;x) 9)

has been accurately solved. Thus, the total molecular wave
function can be expanded in terms of a complete set of elec-
tronic eigenfunctions:

Win= 2 Yu(X)@u(r0), (10)

where the expansion coefficients ¢,(x) are the six-
dimensional nuclear motion wave functions. For low vibra-
tional energies one can often neglect the coupling to excited
electronic states and truncate the sum in Eq. (10) to only one
term

W o= o (X) @ (13x), (11)

where n=0 corresponds to the ground adiabatic electronic
state. For higher vibrational energies more terms in the sum
over n must be included and a more general treatment is
necessary.43’44 Thus, in the case of cyclic-N3, for the vibra-
tional states with energies close to the conical intersection, it
may be necessary to include the first excited doublet elec-
tronic state in the calculations. We plan to explore this topic
in future work. In the present work, we restrict our consid-
eration to the ground doublet electronic state of cyclic-Nj
and drop the subscripts in Eq. (11) assuming that it describes
the ground adiabatic electronic state.

Finally, we substitute the expansion (11) into the Schro-
dinger equation (7) and obtain the standard Born—
Oppenheimer (BO) equation

ﬁ2
BO: {— mv% V(x)] P(x)=E(x). (12)

Deriving this equation we used the property
(@(x)|V]@(x))=0, which is straightforward to prove by dif-
ferentiating the normality condition (@(x)|@(x))=1 and
taking into account that |¢(x)) is real. Solutions ¢(x) of the
BO nuclear motion equation (12) are real and single valued.

Now we recall that the real ground state electronic
eigenfunction ¢(r;x) is double valued. It changes sign
whenever the nuclear motion s(x) encircles the conical in-
tersection between the ground and the first excited electronic
states. In the case of cyclic-Nj the actual conical intersection
occurs at high energies (~4600 cm™ ') but it is important to
realize that the sign change occurs for much lower energies.
The vibrational energy only needs to be high enough to allow
the nuclei to go over the pseudorotation barrier (~311 cm™")
so that the nuclear motion s(x) can encircle the intersection.
In our previous paper,” we predicted that the energy of the
BO ground vibrational state in cyclic-N5 is ~1312 cm™'
(i.e., well above the pseudorotation barrier). Thus, significant
geometric phase effects should occur for all vibrational states
of cyclic-N; without exceptions, even for its ground vibra-
tional state. In order for the total wave function ¥ of Eq.
(7) to remain single valued and maintain the correct permu-
tation symmetry for all nuclear configurations, the nuclear
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motion wave function ¢(x) must also change sign [i.e., it
should also be double valued such as ¢(r;x)]. However, in
the standard BO approach there is no built-in mechanism to
ensure that the nuclear motion wave function in Eq. (12)
changes sign as the nuclear motion s(x) encircles the conical
intersection.

To overcome this inconsistency, we follow the method of
Mead and Truhlar’ and multiply the real adiabatic electronic
wave function by a complex phase factor

{
@G(r;x)=<P(r;x)'e><p[i5 n(X)], (13)

where € is an odd integer and 7(x) is an angle function that
changes by 27 for any nuclear motion s(x) that encircles the
conical intersection. The role of the phase factor in Eq. (13)
is to cancel the sign change in the real double-valued ¢(r;x)
giving rise to a complex single-valued electronic wave func-
tion ¢%(r;x). For symmetry reasons, the most convenient
value of the gauge parameter for the description of triatomic
molecules is €=3. Figure 2 illustrates how the exp{i3/27(x)}
transformation (in the middle of figure) cancels the sign
change in the real double valued ¢(r;x) function (left frame)
and produces the complex single-valued ¢C(r;x) function
(right frame).

Using the ¢%(r;x) wave functions (13) for the expan-
sion of W, and substituting the result into the Schrodinger
equation (7) we obtain [instead of Eq. (12)] the generalized
(GBO) equation for the nuclear motion

2

h
GBO: m[—iv—A(x)]2+ V(x) (49 (x)=E¢°(x),
(14)
where A(x) is called the vector potential defined as
Ax)=i(e%(0)|V]e(x)). (15)

The most important point here is that the solutions °(x) of
the nuclear motion equation (14) are now complex single
valued, so that no sign inconsistencies occur in the GBO
formulation.

Furthermore, by applying the appropriate phase factors
and projection operators to the complex single-valued solu-
tions (x), it is possible to obtain the real double-valued
solutions with the correct permutation symmetry. Cyclic-N3
contains three identical nuclei so that the symmetry of its
vibrational eigenstates can be classified using the irreducible
representations of the permutation group S;. This group has
two nondegenerate irreducible representations, A; and A,,
and one doubly degenerate irreducible representation E. The
A (A,) vibrational eigenstates are symmetric (antisymmet-
ric) with respect to an exchange of any two of the three
nucglg:(i). The solutions of A; and A, symmetry can be obtained
via™
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¢
s, =1 +P123+P321)¢G]'3XP[1'§ﬂ(x)]

€
+[(P12+P23+P31)¢G]‘€XP|_157]()5)}, (16)

4
Ya, =i [(1+P123+P321)¢G]~exp[izn(x)]
4
_[(P12+P23+P31)¢G]‘€XP|_iiﬂ(x)})~ (17)

The real double-valued solutions of E symmetry can be ob-
tained in three steps.”’ In the first step, the E symmetry pro-
jection operator is applied to the complex solutions to obtain
symmetrized complex solutions via

J. Chem. Phys. 122, 044315 (2005)

G o 61oognl i L
P7=[(2—=Pi3— P3y) 7] -exp 5 7(x) ;. (18)

In the second step, each pair of the degenerate symmetrized
complex wave functions IZ/G is used to construct a pair of real
double-valued degenerate wave functions by taking the real
part of one of the degenerate symmetrized complex wave
functions and the imaginary part of the other. In the third
step, the set of these real double-valued wave functions is
orthogonalized using the Schmidt orthogonalization proce-
dure to obtain solutions ¢ . The permutation symmetries of
the ¢y, Yha,, and Y will be further discussed in Sec. VI and
their relevance to the cancelation of the sign change will be
demonstrated.

An expression for the GBO kinetic energy operator for
nonzero total angular momentum in the hyperspherical coor-
dinates has been derived in Ref. 32:

h> 9 .9 4R | 1 a 1 & 1 J? J2
ﬂ[—iV—A(x)P:—szs %pso"p 2up? sin20ﬁsm20ﬁ+sin297¢,2 +m (1—sin 6) (1+s)in0)
2sin® 4 2ulp ? dp 2 0 p? 90 prsin’ 0 dg Pop p? ‘a0
P Ai+ﬁ—2 A+ —AG+ az|q Heos? [l ’ A}. (19)
prsin 0 Pap| 2m| TP 270 p2ein2 g 2up?sin? @ liag 7

Using Eq. (13) in Eq. (15) we obtain for the three com-
ponents of the vector potential in the hyperspherical coordi-
nates

{9

A0 =—3 Z;x), (20a)
{9

A== ’;(;), (20b)
{9

Agn)=—3 ;’f:) (200)

The explicit functional form of 7(x) is somewhat arbitrary;
the only requirement is that 7(x) changes by 27 for any path
that encircles the conical intersection. The general expression
for n(x)=n(p,0,¢) in the hyperspherical coordinates (de-
rived in Appendix B of Ref. 32) is especially simple in the
case of the D3 conical intersection

n=¢. (21)

Therefore, for the D5, conical intersection we obtain from
Egs. (20a)—(20c¢)

Ap(x) = 09 (22&)

Ay(x)=0, (22b)
4

Ay(x)=— 3 (22¢)

This vector potential has only one nonzero component A 4,
so that the kinetic energy operator (19) simplifies signifi-
cantly (for J=0):

h2
m[—iV—A(JC)]2

A SR . d
B 2up’ c?pp p  Qup?sin2f 96°" "0
4n* 1 7 bin d % 23
— Q= | T/ = =l T .
2up? sin® 0\ 9 Yo ¢

Finally, the kinetic energy operator can be presented in the
following compact form:

ﬁ2
5—[—iV-AWX)]
2p

R0 o0 4R 1 3.20
T 2up T p 2pprsin26 a6 " a6

442 1(a 6)2

2 up? sin® 6

For future reference we would like to mention that the ex-
pression (24) contains four singular terms. Two of them,
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sin26 —Yoaevea ) @5)
L7 (6—0) (26)
— —0),
sin® 0 9>

are well known as Eckart singularities and will be treated in
both BO and GBO calculations by the appropriate choice of
the basis set.*! The other two are relevant to the vector po-
tential

1
d,m%—ﬂ” ((9—>0), (27)
A2 : —o  (6—0) (28)
%sin? 0 '

They appear only in the GBO treatment and occur at the
point of the conical intersection.

IV. NUMERICAL TECHNIQUES

The potential energy surface V(p, 6, ) strongly couples
internal degrees of freedom so that the Schrodinger equation,
either Eq. (12) or Eq. (14), is nonseparable and cannot be
solved by analytical decoupling. Therefore, we decouple the
radial and angular coordinates numerically using the sector
adiabatic approach.’ In this approach, the full dimensional
Schrodinger equation is solved in two steps. In the first step
the hyperradius p is partitioned into a large number of sectors
(intervals) and the angular (6,¢) part of the equation is
solved numerically for each sector with p (as a parameter)
fixed at the center of each sector. The potential coupling
matrices and overlap matrices between the neighboring (ad-
jacent) sectors are also computed at this step. In the second
step, a set of one-dimensional coupled-channel (CC) equa-
tions is obtained for the hyperradial p coordinate® and is
solved using a numerical propagation technique. In this way,
the accurate full dimensional solutions of the Schrodinger
equation are obtained using the exact Hamiltonian and in-
cluding all couplings.

The parallel computer code of Kendrick, applied previ-
ously to calculate bound states in the HO, (Ref. 34) and Na;
molecules,'*?® was used in this work. This code employs an
efficient hybrid FBR/DVR (Ref. 32) algorithm to solve the
angular (6,¢) part of the problem and uses the Numerov
method*® for solution of the coupled-channel equations in p.
The range of p=[3.185 a.u.; 3.925 a.u.] was partitioned onto
149 sectors using a constant step size of Ap=0.005 a.u. The
dimension of the DVR in € based on Jacobi polynomials was
104, which corresponds to the number of Gauss—Legendre
quadrature points in 6=m7—26.>> The FBR in ¢ uses the
complex exponential functions®? and its basis set size was
201. The cutoff value for the sequential diagonalization trun-
cation algorithm®> was set at 10 eV. The coupled-channel
equations in p contained 35 channels for A; and A, symme-
try solutions and 140 channels (70 doubly degenerate chan-
nels) for E symmetry solutions.

The overall accuracy of our results with respect to the
positions of p.;, and p..., number of sectors in p, energy

J. Chem. Phys. 122, 044315 (2005)

cutoff value, 2D basis set size in 6 and ¢, number of coupled
channels in p and convergence of the Numerov bisections is

better than 1 cm ™.

V. STANDARD BO RESULTS

Although the results obtained by solving the standard
Born—-Oppenheimer equation (12) are, formally, incorrect,
they are important for several reasons: First of all, we want
to compare them with the correct results obtained by solving
the generalized Born—Oppenheimer equation (14) in order to
quantify the value of the geometric phase effects in the vi-
brational eigenvalues. This will allow us to make a conclu-
sion about the importance of such effects in the case of
cyclic-N; and usefulness (or uselessness) of the standard BO
approach where these effects are neglected. Second, we want
to visualize the vibrational eigenfunctions obtained from
both the standard and the generalized BO equations in order
to demonstrate qualitatively how the vector potential A 4 in
Eq. (14) affects the node structure of the vibrational wave
functions. This will help our intuitive understanding of the
geometric phase.

In the Tables I, II, and IIT we give eigenvalues of the
symmetries A;, A,, and E, respectively, computed for
cyclic-N; using the standard BO approach. The energy range
extends from the ground vibrational state up to the energy of
the conical intersection. In some cases, several states above
the conical intersection are also given for the reason that will
become clear in the following section. The vibrational wave
functions for all these states are plotted in Figs. 3, 4, and 5
for symmetries A;, A,, and E, respectively, using the 3D
isosurfaces in the hyperspherical coordinates. Using these 3D
plots we have assigned all the states in Tables [-III in terms
of the normal vibration mode quantum numbers and those
assignments are given in the third column of each Table as
(vy,v,,03) =(symmetric stretch, bend, asymmetric stretch).
Although, the hyperspherical coordinates are different from
the normal mode coordinates, it is very useful to remember
that a displacement along the hyperradius p corresponds to
symmetric stretch of the cyclic-N3 triatomic, while displace-
ments along the hyperangles # and ¢ correspond to the bend
and asymmetric stretch respectively. A schematic is given in
Fig. 6 to facilitate the normal mode analysis of the wave
functions in Figs. 3-5 (and in Figs. 7-9 below). Based on
these 3D plots the normal mode assignments are straightfor-
ward for almost all states except a few, where the structure of
the vibrational wave function is complicated by the inter-
mode coupling and/or interaction with another state. In such
cases assignments based on the energy quanta is not very
helpful either, so that the visual representation is still useful,
though assignment is not immediately obvious.

The lowest energy state is the ground vibrational state of
A, symmetry assigned as (0,0,0). The A; symmetry states
are restricted to be symmetric with respect to reflection
through the ¢={0; 120°; 240°} planes, so that the 3D wave
function of the (0,0,0) A, state is basically a torus (see Fig. 3,
frame no. 1) that encircles the conical intersection line (i.e.,
the p axis). The internal circumference of such a torus fol-
lows the hyperangle ¢ with (roughly) constant 6 and p. This
shape mimics the shape of the PES shown in Fig. 6(a) of

Downloaded 07 Mar 2007 to 134.48.20.29. Redistribution subject to AIP license or copyright, see http:/jcp.aip.org/jcp/copyright.jsp



044315-8 Babikov et al.

J. Chem. Phys. 122, 044315 (2005)

TABLE I. BO and GBO energies and assignments of the vibrational states of A; symmetry in cyclic-Nj.

BO BO GBO GBO GBO Geometric
energies assignments gauge error energies assignments; phase effect
State no. (em™") (vy,v,,03) (em™") (em™1) BO state no. (GBO-BO)(cm™")

1 1310.65 0,0,0) 0.144 1401.22 (0,0,0); 1 90.56
2 1810.07 0,0,2) 0.002 2262.31 0,1,0); 3 133.35
3 2128.96 (0,1,0) 1.480 2269.93 0,0,2); 2 459.86
4 2687.09 0,1,2) 0.112 3003.67 (1,0,0); 6 146.82
5 2827.31 0,0,4) —0.002 3123.31 0,2,0); 7 172.87
6 2856.85 (1,0,0) 3.309 3175.60 0,1,2); 4 488.51
7 2950.44 0,2,0) 4215 3435.95 0,04); 5 608.65
8 3402.15 (1,0,2) 0.029 3871.90 (1,1,0);10 223.50
9 3559.65 0,2,2) 1.674 3928.34 (1,0,2); 8 526.19
10 3648.40 (1,1,0) 16.846 3984.73 (0,3,0);12 204.55
11 3741.51 0,1,4) 0.073 4071.50 0,2,2); 9 511.85
12 3780.18 0,3,0) 5.820 4349.79 0,1,4);11 608.28
13 4078.57 0,0,6) —0.015 4601.27 (2,0,0);15 236.46
14 4292.20 (1,1,2) 0.185

15 4364.81 (2,0,0) 19.615

16 4446.42 (2,0,2) 1.786

17 4468.27 (1,2,0) 26.709

18 4510.59 (1,0,4) 0.031

Ref. 7. There are not any nodes in the wave function of the
ground state. The first excited state of A, symmetry is
(0,0,2). Tt exhibits two nodes along ¢ coordinate across each
well (see the well at —60°<@<60°, for example). Due to
symmetry there are six such nodes in the whole range of
0=¢=360°. This corresponds to two quanta of asymmetric
stretch. The next excited state is (0,1,0) and its wave function
exhibits one node along the 6 coordinate (it basically consists
of two tori), which corresponds to one quantum of bend. The
next excited state is the combination state (0,1,2) and its
wave function structure reflects a superposition of these three
quanta. Higher in energy we see the overtone state (0,0,4),
which exhibits four nodes along the ¢ coordinate in the
range —60°<¢@<60° (12 nodes in the whole range of ¢).
The next state is an excited symmetric stretch state (1,0,0),
which exhibits one node along p. We let the readers look
through the remaining frames of Fig. 3 and follow the as-
signments. The assignments of states 15, 16, and 17 were

more difficult and required plotting several isosurfaces of
these wave functions at different values of the probability
amplitude.

For future reference we note that, as clearly seen in Fig.
3, the BO wave functions for several vibrational eigenstates
exhibit nonzero probability in the center, along the p axis.
These are the states 6, 7, 10, 12, 15, and 17. Energies of all
these states are below the energy of the conical intersection.
However, due to quantum mechanical tunneling, the wave
functions of these states reach the point of the conical inter-
section (i.e., they do not vanish at #=0). One can say that
such vibrational states tunnel through the conical intersec-
tion. We will come back to discussion of the consequences of
this effect in the following section.

The states of A, symmetry are restricted to be anti-
symmetric with respect to reflection through the ¢=1{0; 120°;
240°} planes. Therefore, the ground vibrational state of
A, symmetry (see Fig. 4, frame no. 1) exhibits nodes there.

TABLE II. BO and GBO energies and assignments of the vibrational states of A, symmetry in cyclic-Nj.

BO BO GBO GBO GBO Geometric
energies assignments gauge error energies assignments; phase effect
State no. (em™h (v1,0,,03) (em™h (em™h BO state (GBO-BO)(cm™1)

1 1787.52 0,0,1) —0.002 1501.68 0,0,1); 1 —285.84
2 2673.59 0,1,1) 0.002 2272.38 0,0,3); 3 —554.02
3 2826.40 0,0,3) —0.010 2339.15 0,1,1); 2 —334.44
4 3399.24 (1,0,1) —0.009 3038.19 (1,0,1); 4 —361.05
5 3552.35 0,2,1) 0.022 3176.02 0,2,1); 5 —376.33
6 3739.59 0,1,3) —0.023 3183.82 0,1,3); 6 —555.77
7 4078.39 0,0,5) —0.031 3436.32 0,0,5); 7 —642.07
8 4306.40 (1,1,1) 0.002 3869.42 (1,1,1); 8 —436.98
9 4425.68 0,3,1) 0.072 3937.11 (1,0,3);10 =572.77
10 4509.88 (1,0,3) —0.029 4017.89 0,3,1); 9 —407.79
11 4645.23 0,2,3) —0.048 4078.60 0,2,3);11 —566.63
12 4989.68 0,1,5) —0.058 4350.35 0,1,5);12 —639.33
13 5011.66 (2,0,1) —0.023 4576.80 (2,0,1);13 —434.86
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TABLE III. BO and GBO energies and assignments of the vibrational states of E symmetry in cyclic-N5.

BO BO GBO GBO GBO Geometric
energies assignments gauge error energies assignments; phase effect
State no. (em™h (v1,05,03) (em™h (em™h BO state no. (GBO-BO)(cm™ 1)
1 1364.95 (0,0,0) 0.020 1325.67 0,0,0); 1 —39.28
2 1560.68 0,0,1) —0.414 1668.88 0,0,1); 2 108.20
3 2101.70 0,0,2) —0.078 1944.56 0,0,2); 3 —157.14
4 2207.14 0,1,0) —0.119 2151.49 (0,1,0); 4 —55.65
5 2417.35 0,1,1) —0.059 2540.71 0,1,1); 5 123.37
6 2448.36 0,0,3) 0.572 2634.44 0,0,3); 6 186.08
7 2931.49 (1,0,0) —0.374 2828.28 0,1,2); 8 —178.33
8 3006.61 0,1,2) —0.143 2888.24 (1,0,0); 7 —43.25
9 3048.65 0,2,0) 0.054 2981.24 (0,0,4);11 —67.41
10 3132.04 (1,0,1) —0.492 3025.22 0,2,0); 9 —203.31
11 3228.53 0,0,4) 0.452 3257.48 (1,0,1);10 125.43
12 3274.71 0,2,1) —0.059 3409.79 0,2,1);12 135.08
13 3358.79 0,1,3) 0.276 3546.25 (0,1,3);13 187.46
14 3647.56 0,0,5) 0.000 3557.27 (1,0,2);15 —163.34
15 3720.61 (1,0,2) 0.231 3690.31 (1,1,0);16 —101.98
16 3792.29 (1,1,0) —0.394 3735.22 0,2,2);18 —166.66
17 3885.33 0,3,0) 0.098 3816.54 (0,3,0);17 —68.79
18 3901.87 0,2,2) —0.236 3861.90 (0,0,5);14 214.34
19 4008.01 (1,1,1) 0.315 3939.78 (0,1,4);22 —203.31
20 4112.77 (1,0,3) —0.040 4148.60 (1,1,1);19 140.60
21 4133.44 0,3,1) 0.040 4276.10 0,3,1);21 142.66
22 4143.09 0,1,4) —0.098 4297.47 (0,0,6);25 —220.54
23 4258.87 0,2,3) —0.197 4309.19 (1,0,3);20 196.42
24 4491.82 (2,0,0) —0.177 4419.59 (2,0,0);24 —72.24
25 4518.01 0,0,6) —0.295 4449.09 (0,2,3);23 190.22

Since the wave function is real, the nodes are also required at
the transition states (six nodes total in 0<@<360°, see Fig.
10 below, lower left panel). Because there is only one node
across each well (see the well at —60°<¢$=<60°, for ex-
ample) such a 3D wave function corresponds to one quantum
of asymmetric stretch, so that the lowest energy state of A,
symmetry is assigned as (0,0,1). The wave function of this
state looks very similar to the wave function of (0,0,2) A,
symmetry state (Fig. 3, frame no. 2) except that it is twisted
by #=30° around the p axis. Thus, the nodes of the A,
symmetry state coincide with the maxima of the A, symme-
try state, and vice versa. Not only the eigenfunctions of these
states look very similar, but also their eigenvalues differ only
by ~23 cm ™. Such a close similarity exists between several
other states of A| and A, symmetries and we let readers find
the relevant frames in Figs. 3 and 4 (keep in mind that all A,
symmetry states are required to have at least one quantum of
the asymmetric stretch) and check that the corresponding en-
ergy shifts, calculated from Tables I and II, are relatively
small. This occurs because of the very low value of the pseu-
dorotation barrier in cyclic-N;. The nodes of the wave func-
tion for the (0,0,2) state of A; symmetry are at ¢=30°+n
X 60°, where n is an integer (i.e., they all are in the middle
between the minima and the transition state points). The
nodes of wave function for the (0,0,1) state of A, symmetry
are at p=nX60° [i.e., three of them are at the minima and
the other three are at the transition state points, see Fig. 1(b)].
In the hypothetical example of zero energy transition states
(no pseudorotation barrier), these solutions of A; and A,
symmetries will become degenerate. However, in the real
cyclic-N3, the barrier is not zero but it is still small com-

pared to the energy of the vibrational states. Thus, the energy
difference between the states of A; and A, symmetries is
also small.

The wave functions of the £ symmetry states are given
in Fig. 5, where each frame contains two wave functions of
the degenerate E states. The nodal structures of the wave
functions within each pair are similar, except that one of
them is twisted by ¢=45° around the p axis. The wave func-
tions of E symmetry states contain fewer nodes in ¢ than the
wave functions of A; and A, symmetry states. For example,
the (0,0,3) E symmetry state exhibits ten nodes along ¢ co-
ordinate, while the (0,0,3) state of A, symmetry exhibits 12
nodes along ¢. Again, the assignments of the normal mode
quantum numbers are straightforward for most of the states,
except for the states 16, 17, and 18, and we let the readers
follow the assignments in Fig. 5.

VI. GENERALIZED BO RESULTS

It is instructive to perform several independent sets of
generalized BO calculations with different values of the
gauge parameter £. Calculations with £=0 must be identical
to the standard BO approach and we have performed such
£=0 calculations only in order to check that this is indeed
the case. Calculations performed with €=3 are the actual
GBO calculations and these results are presented further in
this section. They will be compared to the standard BO cal-
culations (reported in the preceding section) in order to quan-
tify the magnitude of the geometric phase effect for every
state. Calculations with =6 should, at least in principle, be
equivalent to those with €=0 and the standard BO results, so
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FIG. 3. Three-dimensional wave functions for BO vibrational eigenstates of A, symmetry in cyclic-N5 . Isosurfaces of the probability amplitude are plotted
at the value of 0.05 using the hyperspherical coordinates. A schematic of the hyperspherical coordinates is given in Fig. 6 to facilitate analysis of the nodal
structure of these wave functions. Assignments in terms of the normal mode quantum numbers are given on top of each wave function. See text for discussion.

that any deviations are indicatives of some numerical prob-
lems in the €#0 calculations (convergence and other issues
discussed below). This is very helpful, since the differences
between the €=0 and €=6 calculations can be used as the

upper bounds of numerical errors associated with incorpora-
tion of the vector potential into the Schrodinger equation
(14). Therefore, we performed the €=6 calculations as well,
computed the differences with £=0 results and reported them
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further in this section as the “errors” of the GBO calcula-
tions. Calculations with €=9 should again be identical to
€=3 and we have found that they are indeed practically iden-
tical, so that there is no reason to perform calculations with
any €>9. To summarize, we have performed four indepen-
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FIG. 4. Three-dimensional wave functions for BO vi-
brational eigenstates of A, symmetry in cyclic-N3. As
discussed in the text, the states of this symmetry are
restricted to have at least one quantum of asymmetric
stretch, so that the spectrum starts with the (0,0,1) state.

dent sets of the generalized BO calculations with €=0, 3, 6,
and 9.

In the fifth column of Tables I, IT and III we give eigen-
values of the symmetries A;, A,, and E, respectively, com-
puted for cyclic-N; using the GBO approach. The real
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double-valued vibrational wave functions a,s Ya,s and g

for all these eigenstates are plotted in Figs. 7, 8, and 9, re-
spectively, using 3D isosurfaces in the hyperspherical coor-
dinates. Prior to analyzing all the wave functions in Figs.
7-9 let us understand how the geometric phase changes the
nodal structure of the vibrational wave functions. Figure 10
shows 2D slices of the wave functions for the (0,0,0) state of
A, symmetry and the (0,0,1) state of A, symmetry, which are
the lower energy vibrational states of these symmetries. In
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this figure the color is used to show the sign of each part of
the vibrational wave function—information that is not seen
in Figs. 3—5 and 7-9, where only the ||? is presented. Two
slices on the left are from the BO calculations, while two
slices on the right are from the GBO calculations. The BO
wave functions are single valued everywhere. However, the
GBO wave functions are double valued at ¢=0 [i.e., they
exhibit the sign change when the nuclear motion s(x) en-
circles the conical intersection]. Indeed, the GBO wave func-
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FIG. 5. Three-dimensional wave functions for BO vibrational eigenstates of £ symmetry in cyclic-N;. Each panel contains two wave functions for two

degenerate states of £ symmetry.
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FIG. 5. (Continued.)

tion of A; symmetry changes sign at ¢=0, whereas the BO
one is symmetric. Similarly, the GBO wave function of A,
symmetry is positive across the node at ¢=0, whereas the
BO one changes sign. Such a behavior is analogous to the
behavior of the BO electronic wave function illustrated in the
left frame of Fig. 2. By construction, the product of the real
double-valued vibrational wave functions with the real
double-valued electronic wave function results in single-
valued total wave functions which exhibit the correct permu-
tation symmetry everywhere. To see that this is indeed
achieved in our GBO results, take each GBO vibrational
wave function (A or A,) in Fig. 10 right frames, and visu-

ally “multiply” it by the electronic wave function from Fig.
2 left frame. The resulting total molecular wave function is
single valued everywhere and its permutation symmetry is
always correct: in the case of A; symmetry it is symmetric
and in the case of A, symmetry it is antisymmetric across the
¢={0; 120°; 240°} lines. The drawback of the standard BO
approach is also clearly seen here: if any BO vibrational
wave function (left frames in Fig. 10) is multiplied by the
electronic wave function (left frame in Fig. 2) the resulting
total molecular wave function is double valued with incon-
sistent permutation symmetry. Concerning the nodal struc-
ture of the GBO wave functions, in the wave function of A,
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FIG. 6. Schematic of the hyperspherical coordinates used in Figs. 3—-5 and
7-9. Orientation of the (x,y)-plane is the same as in all those figures.
Hyperradius p is plotted in the direction perpendicular to the (x,y) plane.

symmetry the geometric phase imposes three additional
nodes along the ¢ coordinate at ¢p={60; 180°; 300°}, while
in the wave function of A, symmetry it cancels the three
nodes (see Fig. 10).

In the GBO calculations (as seen from the Fig. 10, right
panel) the lowest energy wave functions of A; and A, sym-
metries look very similar except that one of them is twisted
by $=60° around the p axis. Thus, the nodes of the A,
symmetry state coincide with the maxima of the A, symme-
try state, and vice versa. The three maxima of the A; sym-
metry state are located above the three wells, while the three
maxima of the A, symmetry state are located above the three
transition states. This difference makes the energy of the A,
state slightly higher (~101 cm™') than the energy of the A,
state. Such a similarity exists between several other GBO
states of A| and A, symmetries and we let the readers find
relevant frames in Figs. 7 and 8. Using the 3D plots in Figs.
7-9 the assignments of the GBO vibrational states are
straightforward for most of the states, except for the two
E-symmetry states: 15 and 16. The assignments in terms of
the normal mode quantum numbers are given in the sixth
column in Tables I-III.

VIl. GEOMETRIC PHASE EFFECTS

It appears that the geometric phase not only changes the
number of nodes and shifts the energies, but also affects the
order of the vibrational states.'>?° For example, among the
A, symmetry states obtained from the BO calculations the
(0,0,2) state is the first excited, the (0,1,0) state is the second
excited, and the (1,0,0) state is the fifth excited state. In the
GBO results the order is different: the three lower excited
states are (0,1,0), (0,0,2), and (1,0,0) in the order of increas-
ing energy. To account for such reorderings we have found
for each GBO state in the fifth column in the Tables I-III the
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corresponding BO state in the second column in the Tables
I-III and gave its number in the sixth column of each table.
Then we have calculated energy differences between the cor-
responding GBO and BO states and those are listed in the
last column in the Tables I-III. These differences represent
the magnitude of the geometric phase effect for each vibra-
tional state and it is very clear that the effect is always posi-
tive for the vibrational states of A; symmetry and is always
negative for the states of A, symmetry. As we have demon-
strated in the preceding section (see Fig. 10), the geometric
phase imposes three nodes in the wave functions of A; sym-
metry and cancels three nodes in all wave functions of A,
symmetry. Since the number of nodes in the eigenfunction is
proportional to the energy of the vibrational state, this ex-
plains why all A; eigenvalues go up at the same time as all
A, eigenvalues go down when we include the geometric
phase. Because of such shifts the energies of the correspond-
ing states of A; and A, symmetries in the GBO calculations
approach each other, relative to the BO calculations, and
become quite close. We have already pointed out that the
energy difference between the ground vibrational states of
both symmetries, the (0,0,0) A, state and the (0,0,1) A, state,
is only ~101 cm™ ! in the GBO calculations in contrast with
~477 cm™ ! in the BO calculations. Similarly, the eigenval-
ues of many other states of A; and A, symmetries are
brought closer together in the GBO calculations (compare
Tables I and II) relative to BO calculations. Recall that in the
preceding section, we showed that the corresponding wave
functions in such cases become very similar too (they are
just twisted by ¢=60°).

In the case of E symmetry (see Table III), we obtain both
positive and negative shifts due to the geometric phase ef-
fects and their magnitudes are generally smaller than those in
the states of A; and A, symmetries. However, there is an
important qualitative change related to E-symmetry states. In
the standard BO calculations, the lowest energy state is al-
ways the A, symmetry state (0,0,0). However, in the GBO
calculations the lowest energy state is the ground vibrational
state of E symmetry. It is ~75 cm ™! below the correspond-
ing state of A; symmetry. This reversal of the symmetry of
the ground vibrational state is well known and, probably, was
the first experimentally verified example of a geometric
phase effect.!?~1430

Overall, the geometric phase effects in the case of
cyclic-Nj are very large: Among the A; symmetry states it is
only the ground vibrational state (0,0,0) that is shifted by less
then 100 wave numbers (~91 cm™') compared to the stan-
dard BO result. Other A, states are shifted more significantly
with the largest energy shift of ~609 cm™' for the state
(0,0,4). The smallest energy shift for A, symmetry states is
almost 300 wave numbers (~286 cm ') for the ground vi-
brational state (0,0,1) and the largest is ~642 cm ! for the
state (0,0,5). The shifts of the E-symmetry states are between
~39 cm™ ! for the ground (0,0,0) state and ~221 cm™ ! for
(0,0,6) state. By analyzing the Tables I-1II. We conclude that
the larger shifts are observed for the states with the larger
asymmetric stretch quantum numbers v;. This is because
such states have a larger number of nodes along the ¢ coor-
dinate, so that adding or removing the three geometric phase
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nodes along ¢ affects these states more significantly. On av-
erage, these geometric phase effects are about two orders of
magnitude larger than those reported earlier for Na; mol-
ecule (see Table I in Ref. 20). We believe that this is due to
the rare coincidence: the zero-point energy of cyclic-Nj is
very large and, at the same time, its pseudorotation barrier is
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®
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#12: (0,1,4); #11 BO
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o
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o

#13: (2,0,0); #15 BO

FIG. 7. Three-dimensional wave functions for GBO vi-
brational eigenstates of A; symmetry in cyclic-N;3. As-
signment is given on top of each wave function, to-
gether with the state number of the corresponding BO
wave function in Fig. 3.

very low. It is for this reason the wave function of the BO
ground vibrational state is almost isotropic in ¢ and looks
very similar to a torus.

In Table IV we give the fundamental frequencies of
cyclic-N3 obtained from both the BO and the GBO calcula-
tions. This table makes it obvious that the character of the
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#3:(0,1,1); #2BO #8: (1,1,1); #8 BO

#9: (1,0,3); #10 BO

n

#10: (0,3,1); #9 BO

#4:(1,0,1); #4 BO

#5:(0,2,1); #5 BO

vibrational spectra in the cyclic-Nj is significantly affected
by the geometric phase effects. The v, and v, modes of each
symmetry are brought closer together (compared to the stan-
dard BO results), especially in the case of A; symmetry,
where the GBO v, and v, modes are different by less then
8 cm~! (compared to ~319 cm ™! in the BO case). Also note,

#12: (0,1,5); #12 BO

#13: (2,0,1); #13 BO

FIG. 8. Three-dimensional wave functions for GBO vi-
brational eigenstates of A, symmetry in cyclic-N3. As-
signment is given on top of each wave function, to-
gether with the state number of the corresponding BO
wave function in Fig. 4.

that the order of v, and v, modes is reversed in the GBO
results (compared to the BO results) for both the A; and A,
symmetries. In the last column of Table IV, we give the
frequency shifts due to the geometric phase effects. As ex-
pected, the frequency shifts are larger for asymmetric stretch
normal modes v3 of all symmetries. For all modes of A,
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symmetry the shifts are positive and for all modes of A,
symmetry the shifts are negative.

As we have already explained in the preceding section,
the €=6 generalized BO results should (theoretically) be
identical to the standard BO results, so that the difference (if
there is any) is a signal of numerical errors associated with
the involvement of the gauge potential terms into the Hamil-
tonian. We have computed such differences for each state

#1:(0,0,0); #1 BO

#2:(0,0,1); #2 BO

#3:(0,0,2); #3 BO

#4: (0,1,0); #4 BO

%)

#5: (0,1,1);, #5 BO

&

%)

&

J. Chem. Phys. 122, 044315 (2005)

and they are given in the fourth column in the Tables I-III.
For all states of A, symmetry these errors are very small:
less then 0.1 cm ™! (see Table II). They are also quite small,
less then 0.6 cm™! for all states of E symmetry (see Table
IID). For most states of A; symmetry the errors are also about
one wave number, but there are few exceptions: states 6, 7,
10, 12, 15, and 17 exhibit errors between the 3 and 30 cm ™!
(see Table I). We note that these are the same states where

#6: (0,0,3); #6 BO

8
@

#7:(0,1,2); #8 BO

o

S

#9: (0,0,4); #11 BO

#10: (0,2,0); #9 BO

FIG. 9. Three-dimensional wave functions for GBO vibrational eigenstates of £ symmetry in cyclic-N;. Assignment is given on top of each wave function,
together with the state number of the corresponding BO wave function in Fig. 5.
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#24: (2,0,0); #24 BO

2

FIG. 9. (Continued.)

the BO wave function exhibits nonzero amplitude at the ori-
gin, =0 (see Fig. 3). We also recall that the GBO Hamil-
tonian in Eq. (24) is singular at #=0 as shown in Egs. (27)-
(28). It is because of these singularities that our €=6
generalized BO calculations cannot reproduce perfectly the
standard BO wave functions near the #=0. Even a dramatic
increase of the basis set size in € produces only tiny im-
provements. These singularities can, in principle, be accu-
rately treated in the same way as we treat the Eckart singu-
larities: by the appropriate choice of the basis set functions.*!

An accurate treatment of these singularities will be required
for calculations of the vibrational states at energies above the
conical intersection, especially for cone states which exhibit
large amplitude very close to the origin 6=0. We plan to
undertake such developments in the future. In the present
study, we consider energies below the conical intersection
and found no GBO states that exhibit large amplitude at the
origin (for a general proof of this property see the Ref. 46).
This is readily checked by inspecting the #=0 region of all
the GBO wave functions in the Figs. 7-9. A question arises:
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BO GBO

(0,0,0) A'

FIG. 10. (Color) Demonstration of the changes in the nodal structure of
vibrational wave functions due to the geometric phase effects. The wave
functions obtained from BO and GBO calculations for the (0,0,0) state of A,
symmetry and the (0,0,1) state of A, symmetry are shown. The BO wave
functions are single-valued everywhere. The GBO wave functions change
sign, which is seen at ¢=0 as a sharp red-blue boundary for A; symmetry
state and a (+/+) node of A, symmetry state. When the GBO vibrational
wave function (A, or A,) is multiplied by the electronic wave function (Fig.
2, left panel), the total molecular wave function is single-valued with the
correct permutation symmetry everywhere. See text for further details.

what is so special about those few BO states of A; symmetry
(6,7, 10, 12, 15, and 17) that exhibit nonzero probability at
the origin? It appears that those few states (and also the BO
states 1 and 3 of A, symmetry) are the only states in Figs.
3-5 and 7-9 that exhibit no nodes along the ¢ coordinate.
Indeed, all the GBO states in Figs. 7-9 are required to have
at least the three geometric phase nodes. All the A, and E
symmetry BO states in Figs. 4-5 are required to have nodes
by symmetry. Among the BO states of A; symmetry those
that have at least one quantum of asymmetric stretch v5 are
also required to have the nodes along the ¢ coordinate. What

TABLE IV. BO and GBO fundamental frequencies in cyclic-Ns.

BO GBO Geometric
Vibrational ~ Normal  frequencies  frequencies phase shifts
symmetry mode (em™) (em™") (GBO-BO)(cm ™)
A, vy 1546.20 1602.45 56.25
v, 818.31 861.09 42.78
U3 499.42 868.71 369.29
A, vy 1611.72 1536.51 —75.21
v, 886.07 837.47 —48.60
U3 1038.88 770.70 —268.18
E vy 1566.54 1562.57 -3.97
vy 842.19 825.82 —16.37
U3 195.73 343.21 147.48

J. Chem. Phys. 122, 044315 (2005)

remains are eight v3=0 states of A; symmetry (BO) that
exhibit no nodes in ¢. Among them the two low-lying states
(1 and 3) stay far away from the origin just because they are
not excited enough. Finally, we are left with the six excited
BO states of A; symmetry that have v;=0 and exhibit no
nodes in ¢. Now we note that any wave function that exhib-
its nodes in ¢ is required to vanish at the origin (6=0) be-
cause it changes sign when the observer passes through the
origin (through the conical intersection). This is clearly seen
in the Fig. 10 (left lower panel, for example). That is why the
majority of states reported in this paper vanish at the origin
(due to symmetry), so that the singularities of the GBO
Hamiltonian (24) do not cause any practical difficulty. The
singularity problem is seen only in those six BO states of A
symmetry that are not required to vanish at zero since they
are v3=0 states and have no nodes in ¢. Because the errors
are still small for most of the states and all the BO states are
considered here only for comparison (the BO states are
wrong anyway) the singularities cause no problems whatso-
ever in the present study.

VIIl. CONCLUSIONS

The study of the vibrational spectra for the cyclic-Nj
molecule was presented. This study included the standard
BO calculations as well as the generalized BO calculations,
where the geometric phase effects due to the D;;, conical
intersection are taken into account using the gauge theory
approach. By comparing the results of these two approaches,
we have shown that the standard BO results, where the geo-
metric phase is totally neglected, are not even qualitatively
correct in the case of cyclic-N;. The shifts of the vibrational
eigenvalues (due to the geometric phase effects) are unusu-
ally large and exceed 600 cm™! for several states. Since even
the ground vibrational states of the cyclic-N5 are formed at
energies well above the pseudorotation barriers, the geomet-
ric phase affects these states too, especially the lowerst en-
ergy state of A, symmetry where the shift due to the geo-
metric phase is as large as 286 cm ™ '. Significant changes
have been observed not only in the positions, but also in the
order of the vibrational states and in the ordering of the fun-
damental frequencies. Such adverse changes should clearly
be seen in the experimental spectra and we are looking for-
ward to the possibility of a direct comparison of the theoret-
ical predictions and experimental measurements, which may
become available in the near future.”™

From the theory perspective the cyclic-N3 offers many
more opportunities. At energies close to the energy of the
conical intersection the non-adiabatic effects due to interac-
tion with the excited electronic state may become important.
Theoretical studies of such states will require knowledge of
the excited state PES as well as the nonadiabatic couplings
between the two surfaces. At the point of conical intersec-
tion, an accurate treatment of the singular terms in the GBO.
Hamiltonian (as described in the poreceding section) and of
the singularities in the nonadiabatic coupling matrix* is re-
quired. Nonadiabatic calculations are more difficult and will
require significant additional developments.** However, they
are important, since the spectral range around the conical
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intersection and above it (w=3000 cm™') is easy to probe
experimentally. We plan to purse such calculations in the
future.
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