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We have applied the semiclassical wave packet method !SWP" to calculate energies and lifetimes of
the metastable states !scattering resonances" in a simplified model of the ozone forming reaction. All
values of the total angular momentum up to J=50 were analyzed. The results are compared with
numerically exact quantum mechanical wave packet propagation and with results of the
time-independent WKB method. The wave functions for the metastable states in the region over the
well are reproduced very accurately by the SWP; in the classically forbidden region and outside of
the centrifugal barrier, the SWP wave functions are qualitatively correct. Prony’s method was used
to extract energies and lifetimes from the autocorrelation functions. Energies of the metastable states
obtained using the SWP method are accurate to within 0.1 and 2 cm−1 for under-the-barrier and
over-the-barrier states, respectively. The SWP lifetimes in the range of 0.5!"n!100 ps are accurate
to within 10%. A three-level model was used to investigate accuracies of different approximations
for the reaction rate constant. It was shown that the majority of the metastable states in this system
are either long lived !narrow resonances" which can be treated as stable, or short lived !broad
resonances" which can be treated without the knowledge of their lifetimes. Only a few metastable
states fall into the intermediate range where both energies and lifetimes are needed to model the
kinetics. The recombination rate constant calculated with the SWP method at room temperature and
pressure is in good agreement with available experimental data. © 2006 American Institute of
Physics. #DOI: 10.1063/1.2213252$

I. INTRODUCTION

In Earth’s stratosphere ozone !O3" is formed from oxy-
gen atoms and molecules as a product of the recombination
reaction

O + O2 + M Þ O3 + M , !1"

where M represents a “third body” that can be any atmo-
spheric atom or molecule1 able to carry away the excess
energy, so that stable ozone molecules are produced. In
stratospheric conditions, as well as in majority of laboratory
studies,2,3 this reaction is dominated by the Lindemann
mechanism,4 also known as the energy transfer !ET"
mechanism:5,6

O + O2

——→
kf

←——
kd

O3
*, !2"

O3
* + M ——→

ks

O3 + M . !3"

Here the first step accounts for the formation and decay of
long-lived metastable species O3

*; these can be viewed as
quantum mechanical scattering resonances or as ozone mol-
ecules excited rotationally and vibrationally above the O
+O2 dissociation threshold. The second step describes colli-

sional deactivation of these metastable O3
* species to give

stable O3.
Despite the apparent simplicity of this process and the

considerable amount of experimental7–11 and theoretical12–27

attention it has received in the last decade, the ozone forma-
tion reaction still remains a challenge to the chemical physics
community. This is due to anomalously large isotope effects
associated with this reaction that are not yet fully
understood.7,8,11,21 It has been demonstrated using quantum
statistical !RRKM" theory first13,15 that incorporation of
quantum zero-point energies !ZPE" in reaction !2" is neces-
sary to reproduce the intricate isotope dependence of ozone
formation rates.10 Quantum scattering calculations20,21 have
shown a large number of long-lived scattering resonances
located in a very narrow #ZPE energy range between the
two !due to the isotope mass differences" dissociation thresh-
olds. Population of these metastable O3

* states builds up ex-
clusively from the lower entrance channel and is stabilized
very efficiently, which significantly enhances the formation
rates through this channel and explains the anomalously
large isotope effect. Classical trajectory simulations25,26 were
also able to give an isotope effect, but only when the poten-
tial energy surface !PES" in the channel regions is adjusted
“by hand” to introduce the channel specific #ZPE correc-
tions.

Furthermore, for reaction !3", experimental evidence10,28

of an isotope effect related to quantum symmetry has been
found. This is supported by quantum scattering calculations
on a simpler recombination reaction29,30 where the symmetry
of metastable states has been treated rigorously and found to
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produce an important isotope effect. It has also been shown
that one can account for this effect by introducing !based on
qualitative arguments related to difference in statistical den-
sity of states in symmetric and asymmetric O3 isotopomers"
a simple ad hoc correction factor into statistical15 or classical
trajectory26 treatments and tuning this factor to fit the experi-
mental results. Note that the metastable ozone states O3

* play
the central role in the isotope effects in both processes !2"
and !3".

Although the progress in understanding the basic mecha-
nisms of the isotope effect at a qualitative level has been
impressive and we, perhaps, can say that the molecular ori-
gin of anomalous isotope effects has finally been identified, a
quantitative theoretical treatment of the processes !2" and !3"
is still lacking. It is fair to say that none of the existing
theories of ozone formation reaction are both rigorous and
complete: The RRKM-based theory,15 apart from its statisti-
cal assumptions, lacks information about the ozone PES and
involves an empirical treatment of symmetry. The classical
trajectory method26 is able to show the isotope effects only
when these effects are expected and the desired quantum
properties have been built into the classical formalism a pri-
ori. Such an approach cannot be regarded as based on the
first principles. The quantum mechanical theories proposed
so far are prohibitively expensive computationally and there-
fore either focused only on the first step !2" and thereby
restricted to nonrotating !total angular momentum quantum
number J=0" ozone molecules,20,21 or limited by reduced
dimensionality and sudden approximation assumptions for
collision and vibration-rotation,17 which are not valid for
slow processes !2" and !3" where the relative motion of nu-
clei is rather adiabatic than sudden.

A theoretical method suitable for description of the iso-
tope effects in !2" and !3" should account for all features of
the complicated ozone PES,19 incorporate full dimensionality
of the problem, avoid using sudden approximations, be able
to treat scattering resonances, and also include the quantum
ZPE and quantum symmetry in a rigorous way. We think that
the semiclassical wave packet !SWP" method, also known as
the Herman-Kluk propagator31–34 or as the initial value rep-
resentation method,35–37 might be a good approach for this
problem. It takes into account all features of the PES in a
natural, dynamic way; dimensionality of reactions !2" and !3"
is not a problem for this trajectory-based method, and no
sudden-type approximations are necessary. It is also well es-
tablished that the SWP approach describes the quantum zero-
point energy37,38 and is able to reproduce quantum
symmetry,39 particularly the symmetry effects in state-to-
state transitions in processes similar to the ozone forming
reaction.29

Much less is known about the ability of the SWP ap-
proach to deal with quantum scattering resonances such as
those in O3

*. In the SWP study of collinear H+H2 reactive
scattering, significant oscillations in the state-to-state transi-
tion probabilities have been observed40–42 and attributed to
wide overlapping scattering resonances, but the resonances
themselves were not characterized. In another study of col-
linear H3

*→H+H2 decay,43 the SWP method was used with
particular emphasis on characterization of the scattering

resonances and has been very successful. These are the only
two examples we found in the literature. Unfortunately, the
hydrogen exchange reaction is very different from our reac-
tion !2" in two important ways. First, the nature of scattering
resonances is quite different because the H+H2 PES is
purely repulsive with a relatively high transition state
!4.75 eV", while the ozone PES exhibits no activation barrier
and has a deep covalent bonding well !1.132 eV" and a shal-
low van der Waals well !209 cm−1".19 Second, the H+H2
scattering is a high energy process !0.8–5 eV" observed in
molecular beams, while our reaction !2" occurs at low strato-
spheric temperatures and the #ZPE range, important for the
isotope effects, is only about 30 cm−1 above the dissociation
threshold.

Thus, it would be instructive to test the validity of the
SWP approach on a simple problem relevant to the ozone
forming reaction. We have carried out such a methodological
study, and the results are reported in this paper. We applied
the SWP method to describe quantum scattering resonances
in an ozonelike two-body scattering system. We considered a
simple model, where the internal structure of O2 is neglected
and the focus is on scattering resonances formed behind the
centrifugal barrier due to the angular momentum of a relative
O+O2 motion. We took into account all values of J required
to calculate the converged rate of ozone formation through
the reactions !2" and !3" and characterized every important
resonance by its energy and lifetime. Overall, we looked at
more than 80 resonances with lifetimes !"" that evenly cover
the range from 0.01 to 1000 ps. This certainly represents a
thorough test of the SWP approach. To assess its accuracy
we compared the SWP results against the data obtained using
a fully quantum wave packet propagation technique.44 We
also found it useful to compare the SWP results with results
of another semiclassical method—the time-independent
WKB.45 General energetics of O+O2 scattering is preserved
in our model by using the ozone dissociation energy D
=1.132 eV, its equilibrium distance re=2.4 a.u., and the
O–O2 reduced mass $=$O–O2

as parameters in the Morse
potential function

VJ!r" = − D + D!1 − e−a!r−re""2 +
%2J!J + 1"

2$r2 , !4"

where r is the distance between colliding O and O2 and the
last term describes the centrifugal distortion.46 The parameter
a=2.0 was used to reproduce the dynamically important van
der Waals part of the ozone PES in the channel region.19 The
frequency at the bottom of the potential well was reproduced
only approximately, but this parameter is much less impor-
tant for the recombination process. The potential function
VJ!r" for J=38 is shown in Fig. 1!a".

In Sec. II we briefly survey the time-dependent SWP
method in order to introduce our notation. In Sec. III we
apply the SWP method to obtain energies, lifetimes, and
wave functions of the metastable states for potential !4". Sec-
tion IV is devoted to the kinetics of reactions !2" and !3" and
the calculation of the recombination rate. Conclusions are
given in Sec. V.
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II. SWP PROPAGATION

In the SWP method,31,32 the time evolution of the wave
function &!r , t" of a quantum system is approximated by an
integral over the initial phase space !ri , pi". For a one dimen-
sional problem:

&!r,t" =% dridpi

2'%
&&(!r!,ri,pi"'&!r!,0"(&(!r,rt,pt"

) C!rt,pt,t"exp)iS!rt,pt,t"/%* . !5"

Here, the initial wave function &!r ,0" is expanded in terms
of an overcomplete set of N Gaussian functions of the form

&(!r,ri,pi" = +2(

'
,1/4

exp)− (!r − ri"2 + ipi!r − ri"/%* !6"

placed at the various points !ri , pi" in the phase space and all
characterized by the same width parameter (. The expansion
coefficients &&(!r! ,ri , pi" '&!r! ,0"( are computed only once.
Each phase S!rt , pt , t" in Eq. !5" represents the classical ac-
tion

S!rt,pt,t" = %
0

t

#pt
2/2$ − V!rt"$dt !7"

accumulated along the classical trajectory that originates
from the phase space point !ri , pi" at the initial moment of
time and reaches the point !rt , pt" at time t. The prefactors
C!rt , pt , t" are computed as33

C!rt,pt,t" = -1
2
+ #pt

#pi
+

#rt

#ri
− 2(i%

#rt

#pi
+

i

2(%

#pt

#ri
,-1/2

. !8"

The N trajectories are propagated from !ri , pi" to !rt , pt" in a
usual classical way:

ṙt =
pt

$
, ṗt = - −

dV!r"
dr

-
r=rt

. !9"

However, due to the phase factors eiS/% in Eq. !5", these tra-
jectories contribute to the semiclassical wave function of the
system in a coherent way. All quantum mechanical effects
arise as a result of this interference.

The initial points !ri , pi" are sampled using a Monte
Carlo scheme based on the Box-Müller algorithm.33 For sim-
plicity the initial wave function &!r ,0" is chosen in the form
of a Gaussian packet characterized by the width parameter *,
average position r0, and average momentum p0:

&!r,0" = &*!r,r0,p0" = +2*

'
,1/4

exp)− *!r − r0"2

+ ip0!r − r0"/%* . !10"

In this case integration over r! in the expansion coefficients
&&( '&*( can be carried out analytically, and the integral in
Eq. !5" can be replaced with the sum

&!r,t" =
1
N

.2!* + ("
!*("1/4 /

i=1

N

&(!r,rt,pt"C!rt,pt,t"

) exp)i!S!rt,pt,t" + +!ri,pi""/%* , !11"

where we have introduced

+!ri,pi" 0
!ri − r0"!*pi + (p0"

* + (
. !12"

A practical application of the SWP method starts with
choosing a suitable initial wave packet &!r ,0" defined by r0,
p0, and *. Then, the initial phase space points !ri , pi" are
randomly generated around !r0 , p0" and are weighted by
&&( '&*(. For every initial point the two equations of motion
!9", one equation for classical action !7", and four stability
equations for #pt /#pi, #rt /#ri, #rt /#pi, #pt /#ri #see Ref. 37$
are numerically integrated through time t. The prefactors
C!rt , pt , t" are calculated from Eq. !8", taking care of square
root branches. Finally, the wave packet &!r , t" at time t is
reconstructed according to Eqs. !11" and !12". The width of
Gaussian functions ( and the number of trajectories N are
used as convergence parameters. In the next section it is
demonstrated that the autocorrelation function can also be
calculated very efficiently using the SWP method.

FIG. 1. !a" Initial wave packet with *=20 and p0=0 placed at the point
r0=2.16 a.u. on the potential function for J=38. !b" The half spectrum I!E"
calculated after SWP propagation of this initial wave packet through time
tend=2.5 ps with N=10 000 classical trajectories and (=*.
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III. SWP CHARACTERIZATION OF SCATTERING
RESONANCES

The semiclassical wave function in Eq. !11" can be used
to calculate the autocorrelation function

P!t" = &&!r,0"'&!r,t"( !13"

and the half spectrum

I!E" = -%
0

,

P!t"exp)iEt*dt-2

. !14"

The energy spectrum of potential !4" contains both bound
and metastable states. The bound states are characterized by
real negative energies Em!0 and real wave functions -m,
while the metastable states are characterized by complex en-
ergies En− i.n /2 with positive En and .n and complex valued
wave functions -n. Lifetimes of the metastable states are
obtained as "n=% /.n, and it is usually assumed that the
metastable states can be distinguished from the nonresonant
continuum states using the following condition:

.n/2 / !En − En−1" . !15"

In practice the condition .n! !En−En−1" is employed.
An arbitrary wave packet &!r , t" can be expanded in

terms of a complete set of functions, which includes both
bound -m and metastable -n states:

&!r,t" = /
m

cm-m!r"exp)− iEmt*

+ /
n

cn-n!r"exp)− i!En − i.n/2"t*, n $ m .

!16"

Substituting !16" into !13" leads to

P!t" = /
m

'cm'2 exp)− iEmt*

+ /
n

'cn'2 exp)− i!En − i.n/2"t* . !17"

By plugging !17" into !14" and using condition !15" to elimi-
nate the cross terms we obtain

I!E" 1 '2/
m

'cm'4+!E − Em"

+ /
n

'cn'4
1

!.n/2"2 + !E − En"2 . !18"

Here +!E−Em" is the Dirac delta function. Expression !18"
indicates that the half spectrum should exhibit a set of delta
functions for the bound states and a set of Lorentzians for the
metastable states. Using this knowledge, one can determine
Em, En, and .n by analyzing the shape of I!E". This can be
done for isolated !nonoverlapping" scattering resonances by
fitting each single peak with the Lorentzian function using En
and .n as tuning parameters.43,47 From !16" it also follows
that complex wave functions -n!r" of the metastable states
can be found to within a normalization factor:

-n!r" 1 %
0

,

&!r,t"exp)iEnt*dt . !19"

Here the condition !15" has also been used.
When we use the SWP expression !11" for propagation

of the wave packet &!r , t", the integral in Eq. !13" splits onto
N overlap integrals between the Gaussian functions
&(!r ,rt , pt" and the initial wave packet &*!r ,r0 , p0". These
integrals can be calculated analytically, and the autocorrela-
tion function at every time step can be computed simply as

P!t" =
2
N/

i=1

N

C!rt,pt,t"exp)i!S!rt,pt,t" + +!ri,pi"

− +!rt,pt""/%* ) exp2−
*(

!* + ("
!rt − r0"2

−
1

4%2!* + ("
!pt − p0"23 . !20"

Thus, in the SWP method, the autocorrelation function can
be obtained in a very efficient way, without explicit recon-
struction of the time-dependent wave packet &!r , t".

Figure 1!b" gives the half spectrum I!E" obtained using
the SWP approach for our model system !4" at J=38. The
initial wave packet with *=20 was placed at r0=2.16 a.u.
with p0=0, as shown in Fig. 1!a". In this case 10 000 ran-
domly generated Gaussian functions with (=* were used for
the SWP expansion and the 10 000 classical trajectories were
propagated over a time of tend=2.5 ps. Since in practice the
propagation time is always finite, the infinite integration limit
in Eq. !14" should be, strictly speaking, replaced with this
finite propagation time tend. This would transform the delta
functions in the half spectrum of Eq. !18" into sharp spikes
with certain !small" widths. It also follows from Eq. !18" that
the amplitudes of these spikes are determined by the overlap
factors cm. These properties are clearly reflected in Fig. 1!b".
Fourteen spikes at E!0 correspond to the bound states in
this potential. The amplitudes of the spikes change smoothly,
with v=2 being the most intense and the three upper states
v=11, 12, and 13 being less intense. All the bound states,
starting from the ground vibrational state v=0 and up to the
last bound state v=13, are reproduced quite well. It is inter-
esting that a single SWP is able to capture all the bound
states of the system. We found that a wide enough initial
packet centered in the well or one shifted towards the repul-
sive wall covers the wide energy range and often contains the
full spectrum of bound states. One metastable state !v=14"
can also be seen in Fig. 1!b" as a small peak at E00. Ap-
parently, its overlap with the initial wave packet is insuffi-
cient for an accurate characterization of this and especially
higher-lying metastable states.

Thus, an important factor for success of the time-
dependent approach is a meaningful choice of the initial
wave packet. For an accurate description of the scattering
resonances we must choose a wave packet that covers a nar-
row energy range of interest and overlaps significantly with
all the important metastable states. Also, it would be nice to
have a general recipe applicable to the wide range of J val-
ues. After trying different possibilities we concluded that a
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simple and robust rule is to place the initial packet on the
internal slope of the centrifugal barrier where the potential
changes less rapidly, as shown in Fig. 2, slightly shifted to
the left from the barrier top. This rule is rationalized by the
fact that the wave functions of the metastable states exhibit a
wide maximum in this region !see Fig. 2", so that the overlap
coefficients cn are usually large for all states of interest. We
also found that the width of the initial wave packet with *
=10 is enough to capture all the metastable states of interest
for all necessary values of J, making only insignificant over-
laps with the continuum or the bound states.

Using this protocol, in Fig. 2 we show the barrier region
of the same J=38 potential function shown in Fig. 1!a", but
now the wave packet with *=10 and p0=0 was placed at
r0=4.64 a.u. and propagated using the SWP method with
10 000 trajectories and (=* as in the previous example. For
the purpose of comparison we also propagated this initial
wave packet using the numerically accurate quantum
method,44 and the results are shown in Fig. 3. During the first
0.55 ps the 'P!t"' drops from 1 to a small value, rises back to
a maximum with 'P!t"'40.6, and drops again to a second
minimum. This part of dynamics is reproduced very accu-
rately by the SWP method #see Fig. 3!a"$. After 0.55 ps the
difference between the quantum and SWP values of 'P!t"'
increases, but the general oscillatory behavior of 'P!t"' is still
reproduced quite well by the SWP method, and this is suffi-
cient for characterization of most of the metastable states of
interest. Note: on a one-processor computer the SWP propa-
gation with 10 000 trajectories was a factor of 8 faster than
the full quantum propagation. Furthermore, computational
scaling of the SWP method on a parallel machine should be
nearly perfect because independent classical trajectories can
be propagated on different processors without any message
passing during the propagation time.

We found two important reasons why the SWP value of
'P!t"' is smaller than the quantum one. First, the norm of

SWP wave functions is not accurately preserved. For ex-
ample, at the end of time interval shown in Fig. 3!a" it fluc-
tuates around the value of '&!r , t"'240.75. Simply renormal-
izing the SWP wave function at every time step before the
autocorrelation function is computed accounts for 20%–70%
of errors in 'P!t"'. The second reason is relevant to the SWP
description of tunneling. It is well known that, when the
spectrum of the initial wave packet contains only the bound
states, the SWP autocorrelation function is almost identical
to the quantum one. We have confirmed this in our calcula-
tions !Fig. 1, for example". The discrepancies, such as those
in Fig. 3!a", are observed only when metastable states are
present in the spectrum of the packet. To eliminate this dis-
crepancy, the mechanism by which quantum tunneling is de-
scribed in the trajectory-based SWP method must be under-
stood. It is intuitively clear that if we use very narrow
Gaussian functions !(→,", the range of ri’s sampled with
classical trajectories at t=0 would be equal to the width of
the initial wave packet &*!r ,r0 , p0" determined by *. All
such trajectories !see Fig. 2" would remain trapped in the
well forever and reproduce no tunneling at all. However,
when the initial phase space is sampled with the Gaussian
functions &(!r ,ri , pi" of finite width, the range of ri covered
by the sampling procedure is determined not only by * but
also by (, since all points ri with nonzero overlap &&( '&*(
should be sampled and the overlap is determined by both *
and ( !actually, in the equal sense". For example, when we

FIG. 2. Barrier region of the J=38 potential function. Initial wave packet
with *=10 and p0=0 is placed at r0=4.64 a.u. Wave functions of under-the-
barrier !v=15" and over-the-barrier !v=16" metastable states were calcu-
lated by propagating this initial wave packet and then using Eq. !19". Solid
line-quantum propagation; dashed line-SWP propagation with (=*=10 and
N=10 000. Shaded areas show the classically forbidden regions; the barrier
top is at rtop=5.29 a.u.

FIG. 3. !a" The autocorrelation function and !b" the half spectrum obtained
from propagation of the initial wave packet shown in Fig. 2. Solid line-
quantum propagation; dashed line-SWP propagation with (=*=10 and N
=10 000. Dotted line-SWP propagation with very small (=0.6 and very
large N=500 000; see text for details. Vertical lines in frame !b" show en-
ergy of the barrier top !Vtop" and energies of two metastable states !v=15
and v=16" extracted from the autocorrelation function using the Prony
analysis at time tend=1.45 ps.
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took (=*=10 the range sampled at t=0 was 3.1!ri
!6.0 a.u., which is twice the width of the initial wave packet
determined by * !see Fig. 2". Such a sampling gives some
trajectories !in this case only 2% of the total" that start on the
outside slope of the barrier, “explore” that part of PES, and,
finally, leave. Those trajectories are responsible for a descrip-
tion of tunneling in the SWP method, and we should try to
increase their number for better accuracy. #Simply increasing
the total number of trajectories N does not help. Increasing
the width of the initial wave packet !by changing *" is not
convenient because the spectrum and the autocorrelation
function become very complicated.$ This could be done by
increasing the widths of the Gaussian functions &(!r ,ri , pi",
which in turn would lead to sampling of a wider range of ri’s.
Doing so better reproduces tunneling, but produces a noisy
autocorrelation function because now a much wider range of
space is sampled using the same number of trajectories, and
therefore evolution of the wave function is not described as
accurately as before. Simply increasing the number of trajec-
tories reduces such noise. Thus, ( and N are not truly inde-
pendent parameters in the SWP method; i.e., when ( is re-
duced the number of trajectories N must be increased. We
have repeated the SWP calculations for *=10 using different
( and N, and our results confirm this explanation. As a lim-
iting case the width parameter was reduced to (=0.6 and the
number of trajectories was increased to N=500 000, leading
to a wide range of 0.15!ri!8.8 a.u. being sampled by clas-
sical trajectories at t=0 and 25% of the trajectories being
initially at points outside of the barrier. In this run the quan-
tum dynamics was reproduced accurately through the entire
range of 2.5 ps #see Fig. 3!a", dotted line$ and even longer.
Thus, the accuracy of SWP propagation can be improved at
the expense of computational effort !determined by N".

In Fig. 3!b" the calculated SWP half spectrum I!E" is
presented and compared with the quantum result. The spec-
trum is dominated by two peaks at 0.0207 and 0.0309 eV.
The first !sharper" peak is surrounded by some “noise” due to
the finite propagation time. This peak is located substantially
below the top of the centrifugal barrier Vtop; such metastable
states are usually longer lived and will be called under-the-
barrier states hereafter. The energy of the second peak is
slightly above the Vtop, and this peak is broader. Such meta-
stable states are usually shorter lived and will be called over-
the-barrier states. The reader may also note a series of broad
overlapping peaks forming a wavy structure in the high en-
ergy part of the spectrum. Analysis shows that these peaks
are characterized by large .n0 !En−En−1" /2 and should not
be regarded as a progression of the metastable states, but
rather a gradual transition to continuum. Note: The SWP
method reproduces all these features of the half spectrum.
Small discrepancies in positions, intensities, and shapes of
the peaks do exist !and will be characterized below in terms
of En and .n", but, if necessary, the accuracy of the SWP
method can be improved by increasing the number of disso-
ciative trajectories as described above.

Equation !18" shows that the values of En and .n can be
extracted from I!E" by fitting each peak in the half spectrum
with a Lorentzian function. However, this is not very accu-
rate at finite propagation times when the peaks are not yet

Lorentzians #see Fig. 3!b"$. Also, it is not very practical
when the characterization of many resonances is needed. An
alternative approach, based on Eq. !17", is to fit the entire
autocorrelation function P!t" with a function of the form

P!t" = /
n=1

L

bn exp)− i!En − i.n/2"t* . !21"

This approach allows extracting accurate En’s and .n’s at
relatively short propagation times, when errors in the semi-
classical wave packets are insignificant. In the Prony
algorithm48–50 the P!t" function is defined on a regular grid
of 2L points and the unknown coefficients bn, En, and .n are
determined using a least-squares nonlinear method. A disad-
vantage of this method is the occurrence of false resonances
when large values of L are used for representation of P!t".
However, the true resonances can be easily identified by
large real factors bn and also by stable values of En and .n
with respect to variations of L.

Using the Prony algorithm, the energies and lifetimes
were extracted from the SWP and quantum mechanical au-
tocorrelation functions, and these are presented in Table I.
The deviation in SWP energies of the metastable states seen
in Fig. 3!b" are only 0.03 and 1.8 cm−1 for under-the-barrier
and over-the-barrier states, respectively. This accuracy is
typical for other metastable states over a wide range of J
values !see Table I" which represents a remarkable success of
the SWP method. For the metastable states with lifetimes in
the range of 0.5!"n!100 ps, i.e., when the resonances are
not too narrow and not too broad !5)10−6!.n!10−3 eV",
the SWP predictions of .n’s are accurate to within 10%.
They are still semiquantitatively correct !accurate to within
50%" for short-lived metastable states with "n!0.5 ps !.n
010−3 eV". This lifetime range is much harder to analyze,
even using the Prony algorithm, due to multiple overlaps of
very wide resonances. We also found that on the other edge
of the lifetime spectrum !"n0100 ps" the accuracy of the
SWP method is limited to roughly 5)10−6 eV and the
widths of very narrow !.n!5)10−6 eV" resonances cannot
be accurately calculated. However, as described in the next
section, the lifetimes of very narrow and very broad reso-
nances play only a minor role in the recombination process.

The results obtained using the time-independent semi-
classical WKB method are also presented in Table I. In the
present implementation, the standard WKB method is
improved45 to treat the metastable states near and slightly
above the barrier top. On average, the accuracy of the two
semiclassical methods is roughly the same. A further com-
parison of SWP, WKB, and quantum results is available for
download from EPAPS,51 which includes the analysis of all
scattering resonances in this system.

Finally, the wave functions for the two metastable states
identified in the half spectrum of Fig. 3!b" were calculated
using Eq. !19". Their real parts are shown in Fig. 2, which
demonstrates that within the well region the SWP wave func-
tions are in very good agreement with quantum wave func-
tions. Inspection of the nodal structure allows us to assign
the under-the-barrier resonance very clearly as the v=15
state. The next, over-the-barrier wave function has 16 nodes
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in the well region. Its real and imaginary parts exhibit more
oscillations in front of the barrier, but these cancel when the
modulus of the wave function is calculated, so that '&!r"'
shows only 16 nodes and a long tail with a gradually de-
creasing amplitude !not shown in Fig. 2". Thus, this meta-
stable state can be assigned as v=16. Some quantitative dif-
ferences are seen outside of the main well, where the SWP
wave functions die off faster than quantum wave functions.
For the v=15 state this discrepancy occurs in the classically
forbidden region, while for the v=16 state this is seen in the
barrier region and further on the left side of the barrier. These
discrepancies are certainly due to the semiclassical approxi-
mation which is able to reproduce quantum tunneling only
approximately.

IV. KINETICS OF OZONE FORMATION

To describe the kinetics of ozone formation we introduce
rate coefficients for the processes of formation, decay, and
stabilization of the metastable O3

*: kf, kd, and ks, respectively,
as shown in Eqs. !2" and !3". Assuming steady state condi-
tions for the concentration of the metastable O3

* and intro-
ducing the equilibrium constant K=kf /kd for reaction !2" we
obtain the well known expression for the rate of the recom-
bination process:3,18

d#O3$
dt

= 1#O$#O2$#M$ , !22"

1 0 K
kdks

kd + ks#M$
. !23"

Here 1 represents the third order reaction rate coefficient for
the entire reaction !1". It is instructive to consider two limit-
ing cases where the expression !23" can be simplified:

kd / ks#M$: 1 = K
kd

#M$
; !24"

kd 2 ks#M$: 1 = Kks. !25"

As expected, in either case the rate of the entire reaction !1"
is determined by the rate limiting !slower" step. The first
limit describes a situation in which the metastable O3

* are
stabilized very efficiently, but they form !and decay" very
slowly. Decay of the metastable O3

* species is a first order
kinetic process characterized simply by their lifetime:

kd = . . !26"

Thus, the limiting case !24" is achieved when ./ks#M$, i.e.,
when the scattering resonances are narrow and the meta-
stable states are long lived. On the contrary, the limit !25" is
achieved when .2ks#M$, i.e., when the scattering reso-
nances are broad and the metastable states are short lived.
Indeed, Eq. !25" describes the case where the process of
formation !and decay" of the metastable O3

* is fast compared
to stabilization. As in several earlier studies,20,21 we adopt the
exponential down model52 and calculate the stabilization rate
coefficient as

ks = 3!T"exp5−
E − E0

#E
6 , !27"

where 3!T" is the temperature dependent Lennard-Jones col-
lision frequency for O3

*+M collisions.13,53 Energies of the
metastable O3

* and stable O3 species enter this expression as
E and E0, respectively; the parameter #E represents the av-
erage energy removed from O3

* per one collision with M.52

It is important to emphasize that in the first limit the
recombination rate coefficient 1 is determined solely by the
lifetime . of the metastable O3

*, while in the second limit 1 is

TABLE I. Energies and lifetimes of the metastable states in potential !4" calculated via Prony analysis of the autocorrelation function found from the
semiclassical !SWP" and quantum !QM" propagation of wave packets. Values designated as WKB has been calculated with traditional semiclassical time-
independent WKB method.

J n

En !eV"

ESWP−EWKB,ESWP−EQM

.n !eV"

.SWP−.WKB,.SWP−.QMSWP WKB QM SWP WKB QM

8 19 0.000 53 0.000 51 0.000 47 2.0)10−5 ,6.0)10−5 2.6)10−5 1.5)10−5 2.8)10−5 1.1)10−5 ,−0.2)10−5

16 18 0.001 89 0.001 87 0.001 84 2.0)10−5 ,5.0)10−5 !5.0)10−6 3.1)10−8 8.3)10−9 !5.0)10−6 , !5.0)10−6

16 19a 0.005 76 0.005 41 0.005 20 3.5)10−4 ,5.6)10−4 4.1)10−3 5.8)10−3 8.4)10−3 −1.7)10−3 ,−4.3)10−3

17 18 0.002 84 0.002 98 0.002 93 −1.4)10−4 ,−9.0)10−5 5.5)10−6 2.3)10−6 2.2)10−6 3.2)10−6 ,3.3)10−6

18 18 0.004 09 0.004 11 0.004 01 −2.0)10−5 ,8.0)10−5 3.2)10−5 3.0)10−5 3.5)10−5 0.2)10−5 ,−0.3)10−5

19 18 0.005 19 0.005 25 0.005 14 −6.0)10−5 ,5.0)10−5 1.5)10−4 1.5)10−4 1.7)10−4 0.06)10−4 ,−0.2)10−4

20 18 0.006 35 0.006 35 0.006 26 4.0)10−6 ,9.0)10−5 2.9)10−4 3.4)10−4 2.8)10−4 −0.5)10−4 ,0.1)10−4

21 18a 0.007 55 0.007 42 0.007 39 1.3)10−4 ,1.6)10−4 6.0)10−4 5.4)10−4 5.9)10−4 0.6)10−4 ,0.1)10−4

22 18a 0.008 75 0.008 69 0.008 58 6.0)10−5 ,1.7)10−4 1.4)10−3 1.3)10−3 1.4)10−3 0.1)10−3 ,0.05)10−3

23 17 0.004 13 0.004 09 0.004 06 4.0)10−5 ,7.0)10−5 !5.0)10−6 8.1)10−11 !10−9 !5.0)10−6 , !5.0)10−6

23 18a 0.010 68 0.010 12 0.010 59 5.6)10−4 ,9.0)10−5 1.6)10−3 2.6)10−3 3.0)10−3 −1.0)10−3 ,−1.4)10−3

24 17 0.006 02 0.005 99 0.005 95 3.0)10−5 ,7.0)10−5 !5.0)10−6 2.6)10−8 2.1)10−8 !5.0)10−6 , !5.0)10−6

24 18a 0.011 26 0.011 68 0.011 40 −4.2)10−4 ,−1.4)10−4 4.2)10−3 4.3)10−3 7.9)10−3 −0.1)10−3 ,−3.7)10−3

31 17a 0.020 26 0.019 55 0.019 48 7.1)10−4 ,7.8)10−4 3.1)10−3 2.5)10−3 3.2)10−3 0.6)10−3 ,0.1)10−3

35 16 0.022 93 0.022 86 0.022 69 7.0)10−5 ,2.4)10−4 1.7)10−4 1.6)10−4 1.3)10−4 0.1)10−4 ,0.4)10−4

38 15 0.020 70 0.020 76 0.020 70 −6.0)10−5 ,−4.0)10−6 !5.0)10−6 6.0)10−9 5.8)10−9 !5.0)10−6 , !5.0)10−6

38 16a 0.030 90 0.030 80 0.030 68 1.0)10−4 ,2.2)10−4 1.6)10−3 1.9)10−3 1.7)10−3 −0.3)10−3 ,−0.1)10−3

aOver-the-barrier state.
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determined exclusively by the excitation energy E of the
metastable O3

*. Only in the intermediate regime, when kd

4ks#M$, are the values of . and E both important and the
reaction rate coefficient 1 then must be calculated from the
general expression !23". Furthermore, if we theoretically
“clamp” the energy E of the metastable O3

* and vary only its
lifetime . in a wide range, we see that in the first limit the
reaction rate coefficient 1 is small, while in the second limit
it reaches its maximum value 1=Kks.

In the previous section we have demonstrated that the
energies and especially lifetimes of the metastable ozone
states vary widely. Thus, special care should be taken, and
the validity of one or another approximation should be de-
termined before applying either formula !24" or !25". Fur-
thermore, since more than one metastable state can be in-
volved in the recombination process, even the general
expression !23" may not always be appropriate. For example,
Fig. 4 represents a recombination process that involves two
metastable states denoted as O3

*!1" and O3
*!2" characterized by

their formation and decay rates: k1
f , k2

f , k1
d, and k2

d. Stabiliza-
tion of both metastable states into the upper stable O3 state
should be considered and described by k1

s and k2
s , so does the

intermediate stabilization step O3
*!2"→O3

*!1" described by k21
s .

The rate of ozone formation is then expressed as

d#O3$
dt

= !k1
s#O3

*!1"$ + k2
s#O3

*!2"$"#M$ . !28"

Master equations for the concentrations of the metastable
states are

d#O3
*!1"$

dt
= k1

f #O$#O2$ − k1
d#O3

*!1"$

+ !k21
s #O3

*!2"$ − k1
s#O3

*!1"$"#M$ , !29"

d#O3
*!2"$

dt
= k2

f #O$#O2$ − k2
d#O3

*!2"$ − !k21
s + k2

s"#O3
*!2"$#M$ .

!30"

Assuming the steady state conditions for both states,

d#O3
*!i"$

dt
1 0, i = )1,2* , !31"

and introducing the equilibrium constants

Ki =
ki

f

ki
d , i = )1,2* , !32"

we obtain from Eqs. !28"–!31", an expression equivalent to
Eq. !22", but with the third order recombination rate coeffi-
cient in the following form:

1 = K1
k1

dk1
s

k1
d + k1

s#M$
+ K2

k2
d)k21

s k1
s#M$ + k2

s!k1
d + k1

s#M$"*
)k1

d + k1
s#M$*)k2

d + !k2
s + k21

s "#M$*
.

!33"

Here, the rate coefficients of elementary processes are deter-
mined by the energies and lifetimes of two metastable states:

ki
d = .i, i = )1,2* , !34"

ki
s = 3!T"exp5−

Ei − E0

#E
6, i = )1,2* , !35"

k21
s = 3!T"exp5−

E2 − E1

#E
6 . !36"

We found this mechanism appropriate for description of the
recombination process in our O+O2 model system; it was
also very useful for understanding the recombination kinetics
and allowed us to draw some general conclusions applicable
to the recombination processes that involve more than two
metastable states.

First, let us consider two extreme cases of Eq. !33",
when both metastable states are either narrow or broad. From
Eq. !33" we obtain

k1
d / k1

s#M$, k2
d / k21

s #M$: 1 = K1
k1

d

#M$
+ K2

k2
d

#M$
; !37"

k1
d 2 k1

s#M$, k2
d 2 k21

s #M$: 1 = K1k1
s + K2k2

s . !38"

Comparing these expressions with Eqs. !24" and !25", we can
conclude that in these limiting cases, different metastable
states contribute independently to the total recombination
rate.

Formula !37" can be further simplified. In the previous
section we saw that the lifetimes of narrow !under-the-
barrier" states decrease very rapidly when energy increases,
and for any two consecutive narrow states O3

*!1" and O3
*!2" the

condition .1/.2 is usually satisfied by at least an order of
magnitude. This allows us to neglect the first term in Eq. !37"
and obtain 11K2.2 / #M$, equivalent to Eq. !24", which sim-
ply means that a very narrow metastable state contributes
very little to the recombination rate and can rather be con-
sidered as an upper bound state. Thus, the limiting case pre-
sented in Eq. !37" is somewhat artificial: there is never a
reason to take into account more then one narrow under-the-
barrier state; in some circumstances the last !upper" narrow
state should still be considered as metastable, but the state
below it can always be considered as an upper bound state.

The second limit #Eq. !38"$ can be easily generalized to
describe the case of an arbitrary number of broad metastable
states:

FIG. 4. Diagram of the energy transfer mechanism in a three-level system.
Two metastable states O3

*!1" and O3
*!2" with energies and width !E1, .1" and

!E2, .2", respectively, are stabilized by third body collisions to give stable
O3 in the bound state at energy E0. Stabilization rate coefficients are k1

s , k2
s ,

and k21
s . The rates of formation and decay of the metastable states are deter-

mined by k1
f , k2

f , k1
d, and k2

d.
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.i 2 ki,!i−1"
s #M$: 1 = /

i
Kiki

s. !39"

In this sum, each term is substantially smaller then the pre-
vious one due to the exponential dependence of ki

s on Ei in
formula !35". Thus, the sum in Eq. !38" should quickly con-
verge with the major contribution from the first term !i.e.,
from the lowest broad metastable state".

Another useful limit of Eq. !33" is obtained if the first
metastable state O3

*!1" is assumed to be narrow, but the sec-
ond metastable state is kept in the general form. For such a
case we obtain the following from !33":

k1
d / k1

s#M$: 1 = K1
k1

d

#M$
+ K2

k2
d!k2

s + k21
s "

k2
d + !k2

s + k21
s "#M$

. !40"

Comparing this result with expressions !23", !24", and !37",
we can tell that although an additional stabilization pathway
!k21

s " is now available for the second state O3
*!2", the contri-

butions from two states are still quite independent. Further-
more, when the spectrum of the metastable states is not very
dense, it is usually true that k2

s /k21
s #see Eqs. !35" and !36"$,

and from !40" we obtain

k1
d / k1

s#M$, k2
s / k21

s : 1 = K1
k1

d

#M$
+ K2

k2
dk21

s

k2
d + k21

s #M$
.

!41"

Now the contributions of states O3
*!1" and O3

*!2" are indeed
independent. Also, since here the first state is narrow and the
second is not, the condition .1/.2 is satisfied and we can
neglect the first term in Eq. !41", which leads us to an equa-
tion equivalent to Eq. !23":

k1
d / k1

s#M$, k2
s / k21

s : 1 1 K2
k2

dk21
s

k2
d + k21

s #M$
. !42"

This means that when there is !in the spectrum" a metastable
state which is not narrow, all the narrow metastable states
below it can be treated simply as bound because their con-
tributions are, anyway, very small compared to the contribu-
tion of that not narrow state.

Based on these considerations, we developed a simple
procedure for an analysis of the metastable states. First, we
identify all narrow metastable states using the following cri-
terion:

.i / ki,!i−1"
s #M$ , !43"

and simply treat these as bound states. In our case the error
due to this approximation is less than !minus" 1% of the
value of 1. Then, using the opposite criterion !39", we could
identify all the broad states and calculate their contributions
using Eq. !38". Note: to use Eq. !38" we need to know only
the energies Ei of the metastable states; the knowledge of
accurate lifetimes .i is not required. Due to this approxima-
tion, the error in 1 is only about !plus" 1%. The remaining
states should be treated in a general way, but the point is that
at any value of J there will be just one or at most two such
metastable states, and we can then apply our mechanism
!Fig. 4" and use expression !33".

In Fig. 5 we summarize characteristics of the metastable
states in our O+O2 model system #Eq. !4"$. For J!8 we
found no states that satisfy condition !15". As J increases, the
energy of the barrier top rises !shown as Vtop" but the number
of states decreases, reflecting a faster decrease in the well
depth. As described above, we first identified states that are
narrow according to criterion !42". All such states are under-
the-barrier states. Then, for each value of J, we plotted only
transitions from the not narrow !truly metastable" states into
the upper bound state, or into the upper narrow !almost
bound" metastable state when such a state is present !see Fig.
5". We found that only in six cases, J=32, 39, 40, 45, 46, and
47, are there two not narrow metastable states which should
be treated using Eq. !33". For the majority of J values there
is only one not narrow metastable state left which can be
treated using Eq. !41". In fact, in such simple cases we could
slightly relax criterion !42" and, for every such J, also con-
sider one narrow metastable state !the upper one" and treat
those using the two-state formula !40" or !39", or even the
general expression !33".

Thus, for our O+O2 model system, there is no real need
to verify whether or not the metastable resonances are wide
according to the criterion in !38". However, the expression
!38" for 1 might be useful in some circumstances because it
is simple and especially because it does not require the
knowledge of accurate .i’s. Therefore, we have analyzed
widths of all not narrow resonances shown in Fig. 5; the
results are presented in Fig. 6. Two dashed lines divide the
frame of Fig. 6 onto three areas. In the area above the upper
dashed line the condition .i2ki,!i−1"

s #M$ holds and the read-
ers can see that majority of the resonances fall into this re-
gion !i.e., they are broad". We found that all over-the-barrier
states and many under-the-barrier states are broad. Only six
resonances with J=17, 25, 32, 39, 45, and 46 fall within the
area between the dashed curves, where .i4ki,!i−1"

s #M$, i.e.,

FIG. 5. Energies of several upper states in the model system of Eq. !4" for
the O+O2 collision. The dashed line shows energy of the barrier top !Vtop"
as a function of J. At J!8 there are no metastable states; as J increases,
more and more metastable states appear. The majority of states are under-
the-barrier states, but some over-the-barrier states are also present. States are
labeled by the vibrational quantum number v. For each value of J the tran-
sition is shown !by arrow" from the not narrow metastable states to the
upper bound state, or to the upper narrow metastable state, when present.
See text for details.
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into the intermediate regime. However, the states J=17 and
46 are so close to the upper dashed line that they can be
treated as broad. The area below the lower dashed curve
corresponds to .i/ki,!i−1"

s #M$ and all the narrow resonances
fall into that area !not shown in Fig. 6", mainly outside of the
figure frame. The contour lines in Fig. 6 show the value of
ki

dki
s#M$ / !ki

d+ki
s#M$", which characterizes contributions of

the metastable states to the total recombination rate 1. The
seven most narrow resonances with large uncertainties in
their .i’s !empty circles: J=25, 32, 33, 39, 40, 45, and 46"
give the smallest contributions to 1 and can be omitted for
simplicity. Furthermore, two of these seven resonances, J
=33 and 40, are broad according to criterion !38", so that
their .i’s are not important.

Analysis of Figs. 5 and 6 shows that in our system all the
important scattering resonances are either narrow or broad.
The narrow resonances can be treated as bound states. The
broad resonances contribute independently of the recombina-
tion rate and can be treated using Eq. !39" at every value of
J. Finally, the total third order recombination rate coefficient
!accumulated over all values of J" can be expressed as

1 = /
J=0

,

1!J" 1 /
J

/
i

Ki!J"ki
s!J" . !44"

The equilibrium constants are obtained easily from statistical
mechanics. For our pseudo-two-body model of O+O2 colli-
sion #Eq. !4"$ they should be calculated as54

Ki = +2'%2

$kBT
,3/2

!2J + 1"exp)− Ei/kBT* . !45"

All experimental and theoretical studies indicate that param-
eter #E in Eqs. !35" and !36" is quite small for the ozone

forming reaction. In Ref. 55 it was determined as #E
=20±10 cm−1. Taking the value of #E=20 cm−1 and using
the resonance energies calculated with SWP and WKB meth-
ods, we obtain for room temperature and pressure 1SWP

=4.91)10−34 cm6/s and 1WKB=4.98)10−34 cm6/s, respec-
tively. These numbers are very close to the experimental
value of 1expt=6.5)10−34 cm6/s reported in Ref. 3. Further-
more, if we use #E as a tuning parameter and attempt to fit
1expt with 1SWP by changing #E we obtain 1SWP=1expt at
#E=22.8 cm−1, which is within the error bars of the experi-
mental result.

In these calculations the nitrogen gas !N2" at a pressure
of 1 atm was used as the third body M. For the majority of
states shown in Fig. 6 the stabilization rate ki

s#M$ varied in
the range from 3)10−5 ps−1 !for J=47" up to 2)10−3 ps−1

!for J=14". Note that the dissociation rate coefficient was
always larger: ki

d03)10−3 ps−1. The approach developed in
this work is, nevertheless, very general and can be utilized in
a wide range of concentrations #M$. We found, however, that
the pressure dependence of 1 is very weak, which also agrees
with experimental data available for ozone forming
reaction.55 The effect of pressure on kinetics can be illus-
trated in a very clear way using the diagram of Fig. 6: If the
pressure of the third body #M$ is reduced, the dashed lines in
Fig. 6, which separate areas of stable and metastable states,
are shifted down. As a result, some narrow resonances start
contributing to the kinetics, whereas the contributions from
the states with large .’s decrease according to formula !33",
so that the resultant 1 remains roughly the same. In the op-
posite situation, when the pressure is increased, the border of
stable and metastable states in Fig. 6 is shifted up into the
area of larger .’s, the number of truly metastable states drops
!very narrow resonances stop contributing", but contributions
from the broader resonances increase. This fully complies
with results of Ref. 30.

Thus, the final results of two different semiclassical
methods, 1SWP and 1WKB, are in very good agreement. Fig-
ure 7 shows the dependence of 1!J" used in Eq. !44", and,

FIG. 6. Widths of not narrow resonances in our O+O2 model. The SWP
propagation and Prony analysis were used. Metastable states are labeled by
the corresponding values of J. The dotted line corresponds to .=ks#M$.
Upper and lower dashed lines correspond to .=10ks#M$ and .=0.1ks#M$,
respectively. The majority of the metastable states fall in the region .
410ks#M$ and should be assigned as broad. The contour map shows the
value of ki

dki
s#M$ / !ki

d+ki
s#M$" which determines the contribution of a meta-

stable state to the recombination rate. Empty circles show the metastable
states with a large uncertainty in the SWP result for .. See text for details.

FIG. 7. Contributions 1!J" of different J values to the total recombination
rate of Eq. !44". Filled bars-SWP results; empty bars-WKB results. Transi-
tions from maxima to minima occur every time the upper metastable state
disappears due to centrifugal distortion of the potential !compare to Fig. 5".
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again, the results of SWP and WKB methods agree very
well. At some values of J the SWP result slightly exceeds the
result of WKB, while at other values of J the result of WKB
is somewhat larger. But these differences compensate each
other almost entirely when the sum !44" over all values of J
is calculated.

V. CONCLUSIONS

In this work we demonstrated that the SWP method can
be successfully applied to calculate energies and lifetimes of
the metastable states trapped behind the centrifugal barrier.
Such metastable states play a central role in many recombi-
nation reactions, including the ozone forming reaction. The
model for the O+O2 collision considered in this work was a
simplified one: it does not describe all features of the PES
and is not able to capture the anomalous isotope effects re-
lated to the multichannel nature of this reaction. However,
this approximate model allowed us to carry out a thorough
test of the method itself. Indeed, calculations of the scatter-
ing resonances are not easy for this system due to heavy
masses of the nuclei, the deep potential energy well, and a
broad centrifugal barrier. Despite these complications, the
SWP method gave accurate predictions of energies for all
under-the-barrier and over-the-barrier metastable states for
all values of total angular momentum J. The lifetimes in the
range of 0.5–100 ps, important for recombination reactions,
were also accurately predicted. It is also quite encouraging
that the SWP method was able to reproduce the experimental
rate of ozone formation. Further development of this ap-
proach is ongoing, with the purpose to treat the ozone recom-
bination reaction in full dimensionality, including associated
isotope effects.
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