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In the context of molecular quantum computation the optimal control theory (OCT) is used to obtain
shaped laser pulses for high-fidelity control of vibrational qubits. Optimization is done in time do-
main and the OCT algorithm varies values of electric field in each time step independently, tuning
hundreds of thousands of parameters to find one optimal solution. Such flexibility is not available in
experiments, where pulse shaping is done in frequency domain and the number of “tuning knobs”
is much smaller. The question of possible experimental interpretations of theoretically found OCT
solutions arises. In this work we analyze very accurate optimal pulse that we obtained for imple-
menting quantum gate CNOT for the two-qubit system encoded into the exited vibrational states of
thiophosgene molecule. Next, we try to alter this pulse by reducing the number of available frequency
channels and intentionally introducing systematic and random errors (in frequency domain, by mod-
ifying the values of amplitudes and phases of different frequency components). We conclude that
a very limited number of frequency components (only 32 in the model of thiophosgene) are really
necessary for accurate control of the vibrational two-qubit system, and such pulses can be readily
constructed using OCT. If the amplitude and phase errors of different frequency components do not
exceed ±3% of the optimal values, one can still achieve accurate transformations of the vibrational
two-qubit system, with gate fidelity of CNOT exceeding 0.99. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4765344]

I. INTRODUCTION

It is often argued that shaped laser pulses, prepared the-
oretically using the optimal control theory (OCT), would
be hard or even impossible to reproduce in experiments.
In such calculations, the OCT pulse “shaping” is carried
out in the time domain with the number of “tuning knobs”
equal to the number of time steps within the total pulse
duration.1–3 For example, for a 25 ps laser pulse the num-
ber of time steps (used for accurate propagation of time-
dependent Schrödinger equation and optimization of pulse’s
shape) may be close to 220.4 Indeed, such flexibility is usually
unavailable in experiments,5–7 where the number of frequency
channels never exceeds 210. For this reason it is sometimes
suggested that theoreticians migrate from the OCT methods
towards the evolutionary genetic algorithms8–10 that, similar
to experiments, carry out pulse optimization in the frequency
domain.

In this paper, using standard techniques of Fourier trans-
form, we show that the OCT pulses, seemingly complicated in
time domain, are in fact very simple in the frequency domain.
We demonstrate by calculations that a very accurate pulse,
optimized in time domain for coherent manipulation of vibra-
tional states of the molecule, can be reproduced surprisingly
well using as few as 25 frequency channels. This is well within
the reach of today’s pulse shaping techniques, which justifies
the use of OCT method as a predictive practical tool.

a)Author to whom correspondence should be addressed. Electronic mail:
Dmitri.Babikov@mu.edu.

Another focus of this paper is on robustness of the OCT
solutions. It is sometimes argued that such pulses are very
fragile, so that changing the pulse shape just slightly would
change dramatically the result of action of the pulse on a
molecule. In our numerical experiments we take a very ac-
curate OCT pulse and modify it in several different ways, us-
ing filters in the frequency domain. The effect of modifica-
tion is then studied by acting, with the modified pulse, on a
molecule.

The issues of accuracy, reproducibility and robustness are
particularly important in context of molecular quantum com-
puting (QC),11–32 where the requirements to fidelity of state-
to-state transformations are very high. Thus, the examples
studied here are drawn from the field of quantum information
processing with vibrational qubits, where the optimized laser
pulses are used to manipulate vibrational wave packets coher-
ently, providing the desired unitary transformations of qubit
states. For these cases, the effects of systematic and random
errors of pulse shaping are studied.

This paper is organized as follows. In Sec. II we describe
in detail the physical model of vibrational quantum computer.
Section III gives details of OCT pulse preparation. Results are
presented and discussed in Sec. IV. Section V summarized
major findings of this work.

II. THE MODEL SYSTEM AND QUANTUM GATES

We use vibrational eigenstates of thiophosgene (SCCl2)
to encode qubits. Vibrational spectrum and dipole moment
matrix of this molecule are known from the experiment.33 We
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TABLE I. Relevant vibrational energy levels and transition dipole moments
of SCCl2 molecule.

Energy (cm−1) Dipole moment (Debye) Two-qubit assignment

8191.03 0.44 . . .
8239.53 0.36 . . .
8246.35 0.38 |00〉
8264.26 0.96 |01〉
8273.98 0.75 |10〉
8278.82 0.70 |11〉
8292.89 0.61 . . .
8319.93 0.43 . . .

focus on 28 vibrational eigenstates in energy range from 8032
to 8493 cm−1. Four states close to the center of this interval,
in the range from 8246 to 8279 cm−1, are used to encode two
qubits (computing states) but the remaining 24 states are also
included in optimization in order to ensure that no population
is transferred to other vibrational states (interfering states).
Also, including all 28 vibrational states, in a ∼450 cm−1

energy range, provide a realistic description of this physical
system.

In the model of quantum computer considered here
there is no direct population transfer between the compu-
tational states. Instead, all transitions go through the elec-
tronically exited state at energy 35 125 cm−1, the gateway
state referenced further as |G〉. This choice allows using laser
pulses in the UV/vis range and makes experimental realiza-
tion of this scenario possible, based on mature pulse shaping
technology.34–37 Table I gives energies and dipole moments
for the most important states in our calculations. This in-
cludes four states of the two-qubit system and two interfering
states, energetically closest to the computing states. Assign-
ments of the qubit states are also given in Table I. Energies
and dipole moments of the remaining states can be found in
Ref. 8.

Large number of vibrational eigenstates in thiphosgene
makes it feasible to implement multi-qubit quantum gates or
even simple quantum algorithms.8 Here we focus on two-
qubit gate CNOT (conditional NOT) which plays a very im-
portant role in quantum computation.38 The action of this gate
can be described as follows: If the first qubit (the control
qubit) is in state |0〉 then the second qubit (the target qubit)
is left unchanged but, if the first qubit is in state |1〉 then the
state of second qubit is flipped. In a concise form this can be
written as

CNOT |00〉 → |00〉 , (1a)

CNOT |01 〉 → |01 〉 , (1b)

CNOT |10 〉 → |11 〉 , (1c)

CNOT |11〉 → |10〉 . (1d)

As explained in Sec. III, the laser field is optimized such that a
single universal pulse is capable of carrying out each of these

four transitions. Which one is actually performed, depends
only on the initial state of the molecule. It should also be re-
membered that quantum system can be in any superposition
of these states, and the laser pulse should be able to transform
appropriately the superposition state as well. This is achieved
by optimizing, in addition to four transitions above, the ac-
tion of quantum gate onto an equally weighted superposition
of qubit states,

CNOT
1

2
( |00〉 + |01 〉 + |10 〉 + |11〉)

→ 1

2
( |00〉 + |01 〉 + |10 〉 + |11〉). (2)

It has been demonstrated that, if all five transitions are opti-
mized simultaneously, the common phase is enforced for all
transitions and the resultant laser pulse is indeed capable of
carrying out a unitary and coherent transformation of any ar-
bitrarily chosen qubit state.16, 39

In practice, when optimization is never perfect, the ac-
curacy of optimized pulse can be characterized by computing
the average transition probability,

P = 1

K

K∑
k=1

|〈ϕf |ψ(T )〉|2. (3)

Each term of this sum represents an overlap of the actual laser
driven wave function ψ(T) at the final moment of time T with
the desirable perfect final state ϕf. Summation is over the set
of transitions optimized simultaneously. For optimization of
the phase-corrected CNOT gate K = 5, as discussed above.
Another quality used to assess the optimized pulse is gate fi-
delity,

F = 1

K2

∣∣∣∣∣
K∑

k=1

〈ϕf |ψ(T )〉
∣∣∣∣∣
2

. (4)

Note that in this expression different overlaps are added
coherently, which takes into account the phase informa-
tion. If the final phases of different optimized transitions
are not perfectly aligned, the value of F can be low, even
if the value of phase-insensitive P is high. Thus, monitor-
ing F guaranties and is usually done in conjunction with
adding the fifth transition, Eq. (2), to the set of optimized
transitions.

Our prior experience with this system and with other
models of the vibrational quantum computer40–43 tells that
the multi-qubit conditional gate CNOT is usually the hard-
est to optimize. If this gate is optimized and the result is
satisfactory, then the other one-qubit quantum gates (such
as unconditional NOT gate, the phase rotation gate, and the
Hadamard gate38) are relatively easy to optimize. So, in this
paper we focus on the CNOT gate only. It is worth men-
tioning that experimental demonstration of this one quan-
tum gate would make a very important impact on the field
of molecular QC, as it did in case of the ion-trap quantum
computer.44, 45
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III. OCT PULSE OPTIMIZATION

We implement the multi-target version of the OCT as fol-
lows. We maximize the following functional:

� ≡
K∑

k=1

|〈φf |ψ(T )〉|2 − α

∫ T

0

ε2 (t)

s (t)
dt

−
K∑

k=1

2Re

{
〈φf |ψ(T )〉

∫ T

0
〈ψ(t)| i

¯
[Ĥ0 − ε(t)μ]

+ ∂

∂t
|ψ(t)〉dt

}
(5)

with respect to variations in wave function ψ(t) and the field
ε(t). The first term here is P from Eq. (3) and it is maxi-
mized. The second term represents energy of the laser field.
It is minimized. Parameter α is a constant penalty factor
and s(t) = sin2(π t

T
) is a variable penalty function. The last

term of the functional (5) is constructed in such a way that
system’s dynamics is restricted to obey the time-dependent
Schrödinger equation, while the system is driven from the ini-
tial state φi towards the final state φf. Note that this functional
is a multi-target version,14, 21 where the sum over k in the
first and the last terms is taken over all optimized transitions,
1 ≤ k ≤ K. Variations of this functional with respect to
the wave function and the field, one obtains the following
equations:1, 46 A set of K time-dependent Schrödinger equa-
tions propagated forward in time,

i¯
∂

∂t
	ψ (t) = [Ĥ0 − με (t)] 	ψ(t), (6)

each with its own boundary condition 	ψ (0) = φi . A set of K
analogous equation propagated backward in time,

i¯
∂

∂t

←
ψ (t) = [Ĥ0 − με(t)]

←
ψ(t), (7)

each with its own boundary condition
←
ψ (T ) = φf . And one

equation for the common field,

ε(t) = − s(t)

α

K∑
k=1

Im〈 	ψ(t)|←
ψ(t)〉〈←

ψ(t)|μ| 	ψ(t)〉, (8)

which uses information obtained from all these 2K equations.
In order to propagate the Schrödinger equation in time we use
the basis set expansion with time-dependent coefficients cn(t),

ψ (x, t) =
N∑

n=1

cn (t) · ϕn (x) · e−iEnt . (9)

Here ϕn(x) are eigenfunctions of the system and En are their
corresponding energy eigenvalues. Substitution of this expan-
sion into the time-dependent Schrödinger equation leads to
the following equations for the coefficients cn(t):

ċR
n (t) = ε(t)

∑
m

(
cR
m (t) sin θm,n − cI

m (t) cos θm,n

) · Mm,n,

(10a)

ċI
n (t) = ε (t)

∑
m

(
cR
m (t) cos θm,n − cI

m (t) sin θm,n

) · Mm,n,

(10b)

where θm, n = (Em − En)t are phase shifts, Mm, n = 〈ψm|μ|ψn〉
are the elements of the dipole moment matrix, and cR

m and cI
m

are real and imaginary parts of complex coefficient cm.
Equations (6)–(8) are then solved iteratively. The number

of basis states in the expansion of Eq. (5) was N = 29. Those
were 28 vibrational states in the ground electronic state of
thiophosgene plus the gateway state. They all were included
in the wave function propagation. The Runge-Kutta method
of 4th order was used to propagate Eqs. (10a) and (10b). We
start with backward propagation using the guess field in the
following simple analytic form: ε(t) = A · sin ωt · sin2(π t

T
),

where A is amplitude of the guess field. Frequency of the
guess field is ω = EG − Ē, where EG is energy of the gate-
way state and Ē is energy in the middle of the spectrum
(Ē =8269.12 cm−1). During the backward propagation, the
program calculates new values of the field for each time step
and this updated field is then used for the forward propaga-
tion, and so on. The pulse duration was set to T = 25 ps.
This time interval was divided into 300 000 time steps for the
Runge-Kutta propagation. This number was chosen as a com-
promise between the computational time and norm conserva-
tion. Thus, the time step in our calculations is �t ≈ 0.083 fs.
It was found that fidelity of propagation depends somewhat
on the penalty factor α. Thus, several calculations were car-
ried out with slightly different α values. Some of them were
discarded. The “keeper” values follow: α = {33.5, 34.7, 36.0,
37.1, 38.3, 40.1}.

IV. RESULTS AND ANALYSIS

We found that for all values of the penalty factor used
the probability of qubit transformation is slightly higher than
fidelity. This behavior is expected, since calculation of fi-
delity takes phases of optimized transitions into account, and
some small remaining phase errors lead to slight reduction
of fidelity.38, 39 All probabilities are within 7.2 × 10−5 of
each other and the same is true for fidelities. The best re-
sults were obtained with α = 40.1, namely: P = 0.999905
and F = 0.999837. We see that the value of average proba-
bility slightly exceeds 0.9999, while the value of fidelity al-
most reaches 0.9999. We also saw that after ∼80 000 itera-
tions (when optimization was stopped) both probability and
fidelity were still increasing, so, one can assume that even
higher values of P and F are achievable, given appropriate
computational resources. In what follows, the best optimized
pulse (α = 40.1, P = 0.999905, F = 0.999837) is analyzed.

A. Analysis of unaltered optimized pulse

Shape of the optimized pulse ε(t) is presented in Fig. 1.
The field switches “on” and “off” smoothly, reaching the level
of ∼6 × 106V/m closer to the middle of the pulse. Although
the frequency of the field is very high, and the peak-to-peak
oscillations cannot be resolved in Fig. 1, the pulse envelope
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FIG. 1. Laser pulse optimally shaped for CNOT gate (time domain).

is relatively smooth. Overall, in time domain the pulse con-
tains six clearly identified peaks, with only four dominant
structures.

In order to analyze frequency content of the optimized
pulse we used standard techniques of the FFT. In time do-
main our pulse consists of 300 001 points. The first point is at
t = 0 and the last point is at t = T, where the field amplitude is
exactly restricted to zero by means of the penalty function s(t)
as discussed above. The last point of the pulse was removed to
ensure periodicity of the signal. The remaining 300 000 val-
ues of the field ε(t) were used to define real parts of the com-
plex signal. Imaginary parts of the complex signal were filled
by zeros. This complex signal was Fourier transformed into
the frequency domain, giving 150 000 independent positive
frequency components from vmin = �v = 1.35 cm−1 to vmax

= 200 231 cm−1 (and the corresponding 149 999 negative fre-
quency components, plus one point at v = 0). The indicated
value of vmax is very large, due to small time-propagation step
�t.

Discussion in Sec. IV B will emphasize that only the nar-
row part of spectrum (within the transition frequency range
of the system) carries all physically relevant information. In-
deed, first glance at the full frequency spectrum of the Fourier-
transformed pulse shows that amplitudes of the frequency
components that lie in the range 26 850 ± 40 cm−1 are sig-
nificantly higher than the rest of the spectrum. This part of
spectrum is depicted in Fig. 1. The spectrum of optimized
pulse is dominated by three peaks that closely correspond to
transition frequencies between the gateway state and states
|01〉, |10〉, and |11〉 of the two-qubit system (blue sticks). In
contrast, near the frequency of transition to state |00〉 the am-
plitude is very small. This is understood, due to nature of the
gate CNOT, expressed by Eq. (1). Namely, the result of act-
ing with CNOT gate onto state |00〉 is to leave the qubit un-
changed (see Eq. (1a)) and the trivial solution for that is to
not disturb the population of this state. The OCT algorithm is
capable of recognizing this, and excluding the frequency of
|G〉-to-|00〉 transition from the pulse. Analysis of state pop-
ulations during the pulse shows that, indeed, the optimized
CNOT field hardly affects population of state |00〉. Even in
the cases of other three optimized transitions, Eqs. (1b)–(1d),
the population of state |00〉 remains unchanged (unpopulated
in those cases) during the entire duration of the pulse.
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FIG. 2. Results of Fourier transform of the optimized pulse in the narrow
frequency range (64 channels). Panel A shows amplitudes of frequency com-
ponents. Four transition frequencies for computing states (molecular eigen-
states used to encode two-qubit system) are indicated by blue sticks. Tran-
sition frequencies for two interfering eigenstates are also shown, by green
sticks. Heights of these sticks are proportional to the corresponding transi-
tion dipole moments. Panel B shows phases of frequency components.

One could expect same behavior for state |01〉 since
CNOT gate transforms this state into itself as well (see
Eq. (1b)). However, Fig. 2 shows an intense peak at this fre-
quency, and we found that population of state |01〉 is changing
significantly during all four optimized transitions of Eq. (1),
even during the seemingly trivial CNOT|01〉 → |01〉 transi-
tion. This happens because state |01〉 is energetically closer to
states |10〉 and |11〉, and its dipole moment is the largest. As
result, this transition interferes significantly with other opti-
mized transitions. The OCT algorithm cannot exclude the cor-
responding frequency from the pulse, and has to optimize the
transitions needed to control it. In contrast to this, state |00〉
discussed above lies furthest in energy and possesses smallest
dipole moment (see Fig. 2).

Other features of spectrum in Fig. 2 include an intense
broad wing on the low-frequency side, and a less intense wing
on the high frequency side. Note, however, that the frequen-
cies of transitions to the interfering states (green sticks) are
completely suppressed by the OCT pulse optimization.

Finally, we looked at dynamics of population transfer be-
tween the qubit states during action of the optimized pulse.
Here we will analyze in detail one of the optimized transi-
tions, CNOT|10〉 → |11〉, see Eq. (1c). During this process
state populations evolve very similar to what is illustrated in
Fig. 3. From this figure one can notice that state populations
change smoothly, despite highly oscillatory behavior of the
electric field of the pulse applied to the molecule (compare to
Fig. 1). The population dynamics is not entirely monotonic,

Downloaded 27 Jul 2013 to 134.48.45.61. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



194318-5 D. Shyshlov and D. Babikov J. Chem. Phys. 137, 194318 (2012)

t (ps)
0 5 10 15 20 25

P

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 3. Dynamics of state populations during transformation CNOT|10〉
→ |11〉 of the two-qubit system. The case of 32 frequency channels is shown.

with some populations going up and down, but the overall
picture is quite transparent. Figure 3 shows that during the
initial ∼3 ps, when the field smoothly rises, the populations
stay almost constant. Next, we observe the transfer of popula-
tion from the initial state |10〉 into the gateway state |G〉. In the
middle of the pulse population of |G〉 reaches ∼0.6. At this
point the population of target state |11〉 starts increasing (due
to transfer from the gateway state) and does it rather monoton-
ically. The “passive” state of the qubit, state |01〉, also receives
some population during the pulse (up to ∼0.2), but at the end
of the pulse its population is entirely transferred to the target
state, so that this process is well controlled. The other “pas-
sive” state |00〉 remains unpopulated for the reasons discussed
above. Populations of the “interfering” states (in the vicin-
ity of “computing” states of the two-qubit system) do not ex-
ceed 10−2 during the pulse, and they vanish almost entirely at
t = T. During the last ∼ 3 ps of the pulse the field smoothly
decreases and no population transfer occur.

The population dynamics during the other optimized
transition, CNOT |11〉 → |10〉, is very similar to the
CNOT|10〉 → |11〉 dynamics discussed in the previous para-
graph, simply because these two processes represent the re-
verse of each other. Dynamics of the other two optimized
transitions is simpler. Namely, if the initial qubit state is |00〉
then all the populations remain almost unaffected by the pulse
(within 2 × 10−3), which is a trivial scenario for CNOT |00〉
→ |00〉 consistent with discussion at the beginning of this
section. If the initial state is |01〉, the pulse induces some tem-
porary excitation of |G〉, |10〉, and |11〉 (up to ∼ 0.65), but it
is returned back to |01〉 at the end of the pulse, consistent with
CNOT |01〉 → |01〉. Again, in all cases populations of the in-
terfering states do not exceed 10−2 during the pulse action.

B. Effect of reduced bandwidth

The main goal of this work was to determine the require-
ments on frequency spectrum of the laser pulse (which also
reflects requirements on characteristics of the pulse-shaper
instrument) to achieve accurate and robust qubit transforma-
tions. In this section we study the effect of reducing band-
width, by removing some of the frequency components from
the optimized pulse. We do this by Fourier-transforming opti-
mal pulse into frequency domain as discussed above, zeroing

TABLE II. Fidelities of CNOT gate for pulses with narrowed frequency
range. First row shows results for the original optimized field without any
filtering.

Left border Right border Number of
(cm−1) (cm−1) frequency channels Fidelity

1.35 200 231 150 000 0.999838
26 623 27 093 352 0.999838
26 815 26 895 64 0.999838
26 832 26 875 32 0.998953
26 845 26 862 13 0.846798

some of the amplitudes (at those frequencies that we want to
remove), and Fourier-transforming the resultant filtered spec-
trum back to the time domain, producing new filtered laser
pulse. Then, this new pulse is applied to the molecule in var-
ious initial states of the two-qubit system to perform four in-
dependent transitions of the CNOT gate, according to Eq. (1).
For action of the filtered pulse the values of P and F are deter-
mined, and the time-dependent analysis of state populations
is performed, in order to see the effect of modifications made.

As mentioned above, the unfiltered optimized pulse con-
tains 150 000 frequency components in a very broad, physi-
cally irrelevant frequency range (see 1st row of Table II). We
tried to remove frequencies that do not contribute to qubit
transformations by gradually narrowing frequency range of
the pulse. Results of these tests are presented in Table II. First,
we tried to keep only those frequency components that cor-
respond to state-to-state transitions in our system—352 fre-
quency components in the 470 cm−1 wide range (see 2nd row
of Table II). As expected, no changes of P or F, or the underly-
ing state-to-state dynamics were observed. Next, we tried to
cut off more from the spectrum, leaving only 64 unchanged
frequency channels around the central frequency. This part of
spectrum corresponds to Fig. 2 and is only 80 cm−1 wide. The
results are given in 3rd row of Table II and, again, are entirely
identical to those of unfiltered optimal pulse. Note that this
frequency range contains, besides four states of the two-qubit
system, two “interfering” vibrational states—one on each side
of the spectrum (green sticks in Fig. 2). In the next test we
tried to remove even these two frequencies, reducing the num-
ber of frequency channels to just 32, which corresponds to the
43 cm−1 wide frequency range, shown in Fig. 4(a). Note that
this modification cuts off two small spectral structures at the
ends of the left and right wings of the optimized spectrum (see
Fig. 4(a)). The results of this test are summarized in the 4th
row of Table II, and we see that it leads to visible reduction of
gate fidelity. This demonstrates quite clearly that controlling
transitions to the interfering states is important if one wants
to obtain very accurate quantum gates. In the final test of this
series we tried to filter the spectrum as shown in Fig. 4(b),
keeping only the intense peaks in the spectrum (13 frequency
channels) and removing both wings entirely. The results, sum-
marized in the 5th row of Table II, show a significant drop
of gate fidelity. This was expected since we removed a num-
ber of frequency components with relatively high amplitudes,
in particular from the low-frequency side of spectrum (see
Fig. 4(b)). Still, the gate CNOT is meaningful (F > 0.8).
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FIG. 4. Frequency content of the filtered pulses. Panel A shows the case of
32 frequency channels. Panel B shows the case of only 13 frequency channels
kept.

To gain further insight into the mechanism of fidelity loss
in this test we analyzed the underlying population dynamics.
The result for transition CNOT|10〉 → |11〉 is presented in
Fig. 5(a), and can be directly compared to the high-fidelity 32-
channels result of Fig. 3. In two cases the population dynam-
ics is similar during the first half of the pulse. The difference
starts showing up at about t = 15 ps, when the 13-channel
case exhibits second increase of population of the gateway
state. At the end of the pulse, in both cases, population of the
gateway state is dumped onto the qubit states, but, in the 13-
channel case some residual population is found in states |10〉
and |01〉, which explains low fidelity. Further analysis of the
13-channel case showed that no population has been trans-
ferred to the interfering states. This leads to conclusion that
the erroneous population of the computing states of the two-
qubit system is the main factor for fidelity loss in the case of
the narrow-filtered pulse.

In the next series of tests we tried to understand the
role of “wings” of the spectrum. For this purpose we fil-
tered the optimized pulse by removing from the original
spectrum either high-frequency or low-frequency components
only. Namely, the frequency spectrum shows two small peaks
and a wide wing on the low-frequency side; on the high-
frequency side, the spectrum shows four weak narrow peaks
(see Fig. 2(a)). We wanted to check the importance of each of
these structures by filtering them out one by one, and apply-
ing such filtered pulses to the molecule in a manner described
above. The results of this series of tests are summarized in
Table III. Removing the low-frequency parts of spectrum
maintains fidelity F > 0.998, up to the cut-off value of
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FIG. 5. Dynamics of state populations during transformation CNOT|10〉
→ |11〉 of the two-qubit system. Panel A shows the case of 13 frequency
channels. Panel B shows the case of phase rounding to 60◦ sectors. Blue and
red lines show populations of states |01〉 and |00〉, respectively.

v = 26 835 cm−1, where the wide wing begins (see Fig. 2(a)).
Removing this wing results in F ∼ 0.85. Removing only a
part of this structure still results in significant decline of fi-
delity. On the high-frequency side we performed more tests,
due to larger number of minor peaks. Fidelity of the filtered
pulse remains at the level F > 0.998, up to the cut-off value
of v = 26 865 cm−1, when all but one minor peaks are re-
moved. Removing this last peak reduces fidelity to F ∼ 0.96.
Therefore, we can conclude that most important is to keep one
minor peak (adjacent to the major peak) on each side of the
spectrum. Including the more remote peaks is important only
if the fidelity in excess of F ∼ 0.998 is desired.

On the practical side, it is very encouraging and is al-
most surprising that with only 64 frequency channels we are
able to achieve (in calculations) highly-accurate quantum gate
CNOT. In fact, even with 32 channels, when we control just
transitions between states of the two-qubit system and ignore

TABLE III. Fidelities of CNOT gate for pulses with frequency range nar-
rowed from one side.

Cutoff method Cutoff frequency (cm−1) Gate fidelity

Low frequency 26 830 0.999410
26 835 0.998365
26 845 0.852487

High frequency 26 880 0.999807
26 875 0.999582
26 868 0.998777
26 865 0.998024
26 862 0.960835
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FIG. 6. Fidelity of CNOT gate as a function of deviation of pulse’s amplitude
from its optimal value. Blue and red symbols correspond to increased and
decreased amplitudes, respectively.

the interfering transitions, we can achieve a reasonable gate
fidelity, closely approaching F = 0.999, which is well suffi-
cient for the first proof-of-principle experiment.

C. Effect of amplitude errors

The second goal of this work was to determine how sensi-
tive the results of molecule-pulse interaction are to deviations
of pulse’s shape from the ideal optimal shape. The first pa-
rameter to study is pulse’s amplitude. We tried to construct
new modified pulses, from the optimal one, by changing the
values of amplitudes of all frequency components simultane-
ously, by a given amount. Figure 6 illustrates the results of
increasing and, alternatively, decreasing the amplitudes by up
to 10% of the optimal values. We observed monotonic de-
crease of fidelity of the gate CNOT in both cases. The effect
is well described by quadratic function,

F = 1 + a|�A| − b|�A|2. (11)

The values of fitting parameters are a = 1.16 × 10−4,
b = 6.65 × 10−4 for positive �A and a = 4.91 × 10−4, b
= 6.75 × 10−4 for negative �A values. For example, when
the values of amplitudes are changed by 3%–4%, the fidelity
stays relatively high, at the level of F ∼ 0.99. Even a very sig-
nificant deviation from the optimal amplitude, like by ±10%
or so, still results in the meaningful results characterized by
F ∼ 0.93. Since both positive and negative deviations lead to
similar decreases of gate fidelity, one could hope that a ran-
dom noise (with both positive and negative deviations of am-
plitudes of different frequency components occurring simul-
taneously) will not lead to larger decrease of fidelity. To check
this assumption we carried out a series of 50 additional cal-
culations where the amplitude of each frequency component
underwent random error in the range from −5% to +5% of its
optimal value. These randomly modified pulses were indepen-
dently applied to the molecule. The fidelity, averaged over 50
runs, was F = 0.998416 which is significantly higher than the
values obtained with systematically positive (F = 0.983093
for +5% error) or systematically negative (F = 0.979696 for
−5% error) values. Thus, the results presented in Fig. 6 can
be considered as “the worst case scenario” and serve as lower
bound for estimation of fidelity loss due to amplitude errors.
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FIG. 7. Fidelity of CNOT gate as a function of phase rounding error. Blue
and red symbols correspond to two different ways of rounding (see text for
further details). Solid curve shows analytic fit by quadratic function.

D. Effect of phase errors

The last question to explore is the effect of phase errors.
For this purpose we took the values of phases of different fre-
quency components of the optimized pulse (see Fig. 2(b)),
and tried to modify them by rounding their values to a set
of discrete equally spaced values in the range −180◦ < ϕ

< +180◦. The coarseness of phase rounding in our tests var-
ied from only �ϕ = 1◦ up to �ϕ = 90◦ (see Fig. 7). Rounding
phases of the optimized pulse components introduces phase
errors. For example, for �ϕ = 30◦ the optimal phases are
modified by up to ±15◦. Using the intrinsic routine NINT( )
of FORTRAN this rounding operation would be written as

ϕ̄ = �ϕ · NINT(ϕ/�ϕ), (12)

where ϕ is the optimized value of phase and ϕ̄ is value of
phase after rounding.

When the rounding is very coarse it becomes important
which discrete values of phases are chosen. For example, for
�ϕ = 90◦ one can chose ϕ = {−90◦, 0◦, 90◦, 180◦} or, al-
ternatively, the values of ϕ = {−135◦, −45◦, 45◦, 135◦} ob-
tained from the first set through �ϕ/2 rotation. So, we tried
both methods of rounding for each studied value of �ϕ.

Our results for gate CNOT are summarized in Fig. 7. We
see that as �ϕ increases, the value of gate fidelity F gradually
drops. For example, relatively large phase errors introduced
by �ϕ = 30◦ lead to only modest decrease of fidelity, down
to F ∼ 0.97. In the high fidelity region of Fig. 7 the results of
simulations can be approximated by a quadratic function of
the form

F = 1 − a · �ϕ − b · (�ϕ)2 (13)

with a = 4.88 × 10−4, b = 1.32 × 10−5.
When phases of frequency components of the optimal

pulse are modified, the dynamics of state-to-state transitions
also changes. Figure 5(b) illustrates this effect in the case of
�ϕ = 60◦, for transition CNOT|10〉 → |11〉. This figure can
be compared to Figs. 3 and 5(a). The effect of phase errors
(Fig. 5(b)) is different from the effect of reduction of number
of frequency channels (Fig. 5(a)). Interestingly, phase errors
lead to residual population of the gateway state |G〉 and re-
duced population of the target state |11〉, while populations
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of states |01〉 and |10〉 (and of the interfering states) are all
accurately controlled.

V. CONCLUSIONS

The purpose of this computational work is exploratory,
rather than predictive. We do not really expect that the CNOT
pulse obtained here by calculations can be exactly reproduced
in the experiment and can lead to exactly the same result un-
der experimental conditions. However, we feel it is reasonable
to expect that employment of an advanced experimental pulse
optimization technique, such as feedback loop with evolution-
ary algorithm, may lead to experimental result of acceptable
quality. Computational results outlined in this paper could
serve as prediction of a reasonable set of requirements for
the pulse spectrum and, consequently, for the pulse shaping
equipment. We found that the number of frequency channels
needed for accurate two-qubit gate is not large. Calculations
showed that 32 frequency channels may be well sufficient for
moderate fidelity of qubit transformations, F ∼ 0.999. This
result is reliable, because it is based on realistic experimen-
tal spectrum and transition moments of thiophosgene. If the
frequency resolution �v (defined by the pulse length T) is
kept fixed, increasing the number of channels beyond 32 is
not expected to be beneficial. However, it may be beneficial
to increase the number of frequency components (within the
same bandwidth) simultaneously with improving frequency
resolution �v. Effect of pulse shaping errors was studied sep-
arately for amplitudes and phases of frequency components.
Moderate errors in amplitudes (within ±4% of the optimal
values) and phases (within ±5◦ of the optimal values) are
not expected to reduce fidelity of qubit transformations be-
low F ∼ 0.99, indicating favorable path to experimental im-
plementation.

In calculations, such laser pulses can be readily con-
structed using OCT. Although the OCT has a huge band-
width initially available for pulse construction, and there are
no any constraints on use of this bandwidth, the optimal
pulses come out restricted to surprisingly small bandwidth.
The most intense frequency components are resonant to fre-
quencies of controlled transitions, but the off-resonant wings
on both sides of spectrum appear to be important for accurate
qubit transformations. Transitions to energetically remote in-
terfering states are simply avoided by OCT, through suppress-
ing field amplitude at the corresponding frequencies, which
is probably the main reason for small bandwidth of the opti-
mized pulses. When we tried to limit the original bandwidth
(manually, in the frequency domain) to only 64 frequency
channels, we did not observe any decay of the pulse fidelity at
the level of six significant figures: the gate average probability
of CNOT remained at the level of >0.9999, while the phase
sensitive gate fidelity was very close to this value. This does
bode well for robust solutions.
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