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Phase control in the vibrational qubit
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In order to use molecular vibrations for quantum information processing one should be able to shape
infrared laser pulses so that they can play the role of accurate quantum gates and drive the required
vibrational transitions. In this paper we studied theoretically how the relative phase of the optimized
transitions affects accuracy of the quantum gates in such a system. Optimal control theory and
numerical propagation of laser-driven vibrational wave packets were employed. The dependencies
observed for one-qubit gates NOT, 7r-rotation, and Hadamard transform are qualitatively similar to
each other. The results of the numerical tests agree well with the analytical predictions.

© 2006 American Institute of Physics. [DOI: 10.1063/1.2220039]

I. INTRODUCTION

In recent years the possibility of using vibrational eigen-
states of molecules for quantum computation (QC) has been
explored in a number of theoretical papers.l_11 In such a
vibrational quantum computer the quantum information bits
(qubits) are encoded in the normal vibration modes of mol-
ecules. The quantum gates are applied using the femtosecond
infrared laser pulses shaped adaptively to induce the desired
state-to-state transitions.

In order to theoretically design a shape for the pulse
which can serve as a quantum gate the monotonically con-
vergent numerical algorithm derived from the optimal con-
trol theory12 (OCT algorithm) is usually employed. In its
traditional implementation the OCT algorithm is used to op-
timize the pulse shape () for a transfer of the entire popu-
lation from the given initial vibrational state ¢; to a chosen
final state ¢, within the time interval T. This is achieved by
maximizing a relatively simple objective functional. 12714 For
quantum computation, however, the laser pulse should carry
out a unitary transformation of the vibrational qubit states.
For example, for the gate NOT we have to find a pulse which
induces not just one but two transitions between the qubit
states simultaneously:

NOT|0) — |1), (1)

NoT|1) — |0). (2)

This means that if the system was initially in the vibrational
state |0) it should be driven into state |1), but if it was ini-
tially in state |1) it should be driven into state |0). One uni-
versal gate pulse should be able to perform each of these two
transformations; which one is actually performed depends
only on the initial state of the qubit. Therefore, it is required
to optimize the population transfer in both transitions of in-
terest simultaneously. Such a problem can be addressed by
maximizing the functional where the sum over the two tran-
sitions of interest is introduced: >
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Here index k={1,2} labels two transitions, so that for the
gate NOT, we set gb(l) 0), d)(l) [1) and ¢(2 =|1), ¢(2) |0).
The W‘(t) are laser-driven tlme -dependent wave funct10ns
for each case, and &(7) is the universal gate field. Each term
(YA (T)| ¢)|? represents an overlap of the final wave function
with the target state and these are maximized. The first term
in (3) is required to minimize energy of the pulse and also
to constrain its smooth switching on and off. The last
term ensures that evolution of the wave functions ¢/(7) sat-
isfies the time-dependent Schrodinger equation; there
Hy(r)=—(1/2m)A,+V(r) is the time-independent molecular
Hamiltonian and w(r) is the molecular dipole moment func-
tion. Maximization of the functional (3) leads to a set of two
time-dependent Schrodinger equations to be propagated for-
ward and backward in time using ¢f and gbj’ﬁ, respectively, as
boundary conditions. The optimal field () is then deter-
mined iteratively.12

It was noted only recently that although the two transi-
tion probabilities |<1//(1)(T) | q‘) D)2 and |<1//(2)(T) | <;S(2)>|2 are in-
deed maximized 51mu1taneously in the functlonal (3) the fi-
nal phases ¢; and ¢, of the two wave functions ¢; l)(T) and
1,/1( )(T) remain totally independent and the phase difference
is arbitrary. This means that instead of (1) and (2) the fol-
lowing two transitions are actually optimized:

|0) — [1)e', (4)

[1) — [0)e'®, @, # ¢. (5)

Since the total phase of the wave function is irrelevant one
can erroneously conclude that ¢, ¢; causes no problem
whatsoever, but analysis presented in this paper shows that
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this is so only in two cases: when the initial state of the qubit
is either |0) or |1). In general transitions (4) and (5) do not
represent the correct NOT transform of the qubit. The prob-
lem becomes evident when the pulse optimized for transi-
tions (4) and (5) is applied to the qubit in a superposition
state, for example, %(|O>+ [1)). To overcome this drawback it
was proposed7 to include one more transition,

5100 +11) — F(1D) +[0)e'*s, (6)

for optimization simultaneously with transitions (4) and (5).
Note that the purpose of this is not just to take care of the
superposition state %(|0>+|1>) as well, but rather to con-
strain the common phase in transitions (4) and (5). Indeed,
when transitions (4)—(6) are optimized simultaneously and
are driven by the same single laser pulse, their phases are
guaranteed to be equal: ¢3=¢,=¢;. The value of this com-
mon phase can be arbitrary.

In this paper we explore this problem from a different
perspective. In practice, the gate pulse can be obtained by
optimizing only a small number of transitions (two or three
as described above, for example). But in general, the qubit
state can be any coherent superposition of states |0) and |1):

V/:ll(» +V1 - ae'l1), (7)

where V’; and Vﬁ are the amplitudes (0<a=<1) and 6 is
the phase difference (0< §< ). Since a and # change con-
tinuously there is an infinite number of initial qubit states
and the truly universal quantum gate should be able to per-
form accurate transformation of the qubit for any values of «
and 6. Therefore, it is instructive to obtain the gate pulse by
optimizing only a few selected transitions and then study
how this pulse performs when the values of a and 6 are
widely varied.

As a model of one-qubit system we used the diatomic
molecule OH. The ground vibrational state (v=0) of OH was
used to represent |0) state of a qubit while the first excited
vibrational state (v=1) was used to represent the qubit state
[1). As usual, we restrict our considerations to the rotation
frame (interaction picture) which allows to cancel the preces-
sion of the qubit state vector around the axis of the Block
sphere caused by the energy difference of the v=0 and
v=1 states. The QC treatment of OH diatomic was described
in detail in our previous work® and also in a recent
reference.'’ This molecule has also been considered as a
benchmark system in several earlier coherent control
studies.'*"*"” In Sec. II of the paper we first study the gate
NOT; this is the simplest case because the relative phase of
qubit eigenstates is not affected by this gate. Then we con-
sider the r-rotation gate and the Hadamard transform. Con-
clusions are outlined in the Sec. III.

II. PHASE CONTROL
A. Gate NOT

Transformation of an arbitrary initial qubit state (7) by
the gate NOT is represented by

J. Chem. Phys. 125, 024105 (2006)

NOT(Va|0) + 1 — ae’®|1)) — Vol 1) + V1 - ae®|0).  (8)

The resultant qubit state in (8) should be considered as a
target. Let us suppose that the pulse shape has been obtained
by optimizing the two transitions (4) and (5). If such a pulse
is applied to an arbitrary initial qubit state (7), the qubit will
be transformed as follows:

Va|0) + V1 — ae'1) — Vae 1) + V1 - ae®|0)
=(V1 - a0y + y/;ei(""_“’2>| 1))e'¢2.

)

An overlap between the result (9) and the target (8) can be
used to assess accuracy of the pulse transformation:

P=[(g(D|p)*=]a+ (1 - a)e V]2, (10)

The readers can see that the transfer probability here depends
not only on the initial qubit state (through « only) but also on
the phase difference Agp=¢,— ¢, of the optimized transitions
(4) and (5).

As an alternative to transitions (4) and (5), the pulse
shape for the gate NOT can be obtained by optimizing the two
transitions which involve two superposition states:

5(0)+ 1) = (1) + [0))e’s, (11)

5000 = 1) = 51 = [oye', ¢, # ¢;. (12)

When such a pulse is applied to an arbitrary initial qubit state
(7) the result is
i(o4—3)

— l-e
\’E|O> +V1 - ae'l1) — {(\@T
14l
+vV1 - ae’g—)

(rnﬂww
+|{Va———
2

— 1 —¢lleaes) )
+41 - ae’HT |1> e's,

(13)

This formula was derived by adding and subtracting Eqs.
(11) and (12) in order to obtain transformation of the two
qubit eigenstates [0) and |1). In this case, for the transfer
probability we obtain

1+e7e ) a(l-a), . .
P=lulgpp=| T XD i i

2

X(1—e ey | (14)

Again, the pulse quality depends on the phase difference
Ag=@s— @3 between the two optimized transitions (11) and
(12). The effect of the initial qubit state is now through both
a and 6. Analysis of either (10) or (14) shows that the unit
transfer probability P=1 is always achieved when the initial
qubit state is the one used for optimization of the laser pulse,
even if the Ap # 0. However, when « and 6 are changed the
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FIG. 1. Accuracy of the gate NOT as a function of the initial qubit state for the pulses optimized for (a) transitions (4) and (5), (b) transitions (11) and (12),

and (c) transitions (4), (5), and (11).

phase difference Ap# 0 will lead to decrease in the transfer
probability.

In order to explore this effect we have carried out a
series of numerical experiments. First, we have numerically
optimized the pulse shape using the functional (3) with two
transitions, either (4) and (5) or (11) and (12). Then we have
applied the optimal pulse to various initial qubit states gen-
erated by changing « and 6 in expression (7). Finally, for
each studied case we have computed the transfer probability

=[(¢(T)| $pI*. Figure 1 shows P as a function of two vari-
ables, @ and 6; the P(«, 6) of the pulse represents the gate
accuracy as a function of the initial qubit state. The results
obtained with the pulse optimized for transitions (4) and (5)
are presented in Fig. 1(a). Figure 1(b) gives the same for the
pulse optimized for transitions (11) and (12). The readers can
see that in both cases the gate accuracy is very high in the
vicinity of the points used in the pulse optimization proce-
dure: in Fig. 1(a) the value of P is nearly 0.995 at the points
a=0 and a=1; in Fig. 1(b) it is about 0.995 at the points
(a:%, 0=0) and (a:%, 0=1r). These numbers reflect preci-
sion of the OCT pulse optimization. However, in both ex-
amples the accuracy drops significantly when the values of «
and 6 are changed: in Fig. 1(b) near the #=/2 line it is only
~0.6 and in Fig. 1(a) near the @=1/2 line we almost have
P~0.

Such a behavior of the numerical results correlates
closely with the analytical results (10) and (14). Analysis of
the derivative dP/da calculated from Egq. (10) allowed us to
identify only one minimum of P(a) at a—- which is con-
sistent with Fig. 1(a). Note that the line a—§ represents the
equator of the Bloch sphere]6 ' while the points =0 and
a=1 represent poles of the Bloch sphere; the surface of the
Bloch sphere is mapped onto our («,6) plane. Similarly,
analysis of the dP/da and dP/36 for Eq. (14) showed two
local maxima at (a:%, 60=0) and (a:%, 0=), and a saddle
point at (a=1/2, 8=1/2) consistent with Fig. 1(b).

Therefore, we conclude that neither of the two pulses
analyzed in Figs. 1(a) and 1(b) represents a truly universal
quantum gate. If the values of a and 6 deviate from the
values used in the pulse optimization the gate accuracy sig-
nificantly drops. From Egs. (10) and (14) it follows that in
order to maintain P=1 we should have A¢=0 for two tran-

sitions used. Analytically this gives us constant P=1, inde-
pendent of @ and 6 as it should be. But, as explained in the
Introduction, the total phase of the final state is not con-
trolled in the OCT algorithm, i.e., it is arbitrary and is gen-
erally different for two optimized transitions. A practical way
to constrain phases is to include a third transition,’ for ex-
ample, transition (11) for simultaneous optimization with
transitions (4) and (5). It is easy to show that expressions (4),
(5), and (11) can be satisfied simultaneously only if ¢,=¢,
=¢3. To explore this possibility we have repeated the nu-
merical experiment described above, now using the pulse
optimized for three transitions simultaneously: (4), (5), and
(I1). Figure 1(c) represents the result of applying this pulse
to an arbitrary initial qubit state. One can clearly see that the
problem is now removed and the gate is accurate everywhere
in the (a, 6) space, i.e., for any initial qubit state.

In Table I we summarized the results of this study: The
gate accuracy P* for each transition k involved in the opti-
mization procedure is always high due to OCT. The phase
difference A between the two optimized transitions is large
after the standard optimization, but is guaranteed to be small
after the phase-constrained optimization. In the last column
we give the gate fidelity calculated according to Ref. 4 as

TABLE I. Summary of optimization results for the gate NOT.

Transitions optimized P Agp (deg) F

0y — [1)eie1 0.995 175.9 0.001
|1)—|0)eie2 0.995

L(l0y+[1) — F(1)+[0))ees 0.995 79.2 0.591

S(0)=[1) = S(|1)-[0))ees 0.995
0y — [ 1)eie1 0.996 0.2 0.997
[1)—|0)eie2 0.999

£(0)+[1) = (1) +[0))e’® 0.999
0y — [1)ei1 0.997 0.7 0.997
|1)—|0)eie2 0.997

5(0y+[1) = 5(|1)+[0))ees 0.999

5(0)=[1) = S([1)=[0))ees 0.999
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FIG. 2. Accuracy of the 7 gate as a function of the initial qubit state for the pulses optimized for (a) transitions (17) and (18), (b) transitions (19) and (20),

and (c) transitions (17), (19), and (20).

N 2
F= S (k| (15)

Here the sum is over two or more transitions optimized si-
multaneously. The fidelity is high only after the phase-
constrained optimization when the phases of all the opti-
mized W{(T) are almost equal. Table T also demonstrates that
optimizing all four transitions simultaneously: (4), (5), (11),
and (12), gives only a minor numerical advantage since in-
cluding three transitions is already enough to constrain the
common phase.

B. m-rotation gate

The m gate, often represented as

11/0) — |0),

1) — —[1),

increases the phase difference between the qubit states |0)
and |1) by 180°. Transformation of an arbitrary initial qubit
state (7) by the 7 gate is therefore given by

TT(Val0) + V1 - ae’®1)) — Val1) = V1 - ae'0y.  (16)

The two-transition pulse can be optimized using the qubit
eigenstates:

0) — [0)e™r, (17)

1) — =)', @, # ). (18)

Again, the ¢, # ¢ reflects the fact that phases of the final
states are not controlled in the OCT algorithm. Alternatively,
using the superposition initial states, the two-transition pulse
for the 7 gate can be optimized as

L0y +]1) — 50 - [1))e, (19)

L0y =11) — 510y + 1), @4 # gs. (20)

Repeating the derivations described in the previous section
one can obtain from transitions (17) and (18) an equation for
the transfer probability P(«); this equation appears to be
equivalent to formula (10). The expression for P(a, ) ob-

tained from transitions (19) and (20) appears to be equivalent
to formula (14) as well.

Numerical results obtained for the 7 gate are presented
in Fig. 2 and are summarized in Table II. Again, the P(a, 6)
of the pulse optimized for transitions (17) and (18) exhibits
the minimum at the equator [see Fig. 2(a)] while the P(a, 6)
of the pulse optimized for (19) and (20) shows two maxima
and a saddle point [see Fig. 2(b)]. The general shapes of
these surfaces are qualitatively similar to those shown in
Figs. 1(a) and 1(b) for the gate NOT. Some quantitative dif-
ferences between the data shown in Figs. 1 and 2 are also
present. These differences are due to the different values of
unconstrained Ag # 0 obtained in each case. For example,
the NOT pulse optimized for transitions (4) and (5) shows
A@=180° (see Table I) and from Eq. (10) we obtain P(«)
~0 at the equator, consistent with Fig. 1(a). In the case of
the 7 gate the pulse optimized for transitions (17) and (18)
shows smaller Ap=90° (see Table II) and from Eq. (10)
we obtain larger P(a)=0.5 at the equator, consistent with
Fig. 2(a).

In Fig. 2(c) we see again that optimizing three transitions
simultaneously allowed us to fix the phase problem and ob-
tain the pulse which provides the transfer probability close to

TABLE II. Summary of optimization results for the 7 gate.

Transitions optimized P Ag (deg) F
0y — |0)eiet 0.999 92.3 0.480
[1)——[1)ee2 0.999

L(l0y+]1) — 5(0)-[1))e*s 0.994 120.8 0.242
3(00=[1) = 5((0)+[1))ees 0.994
0y — |0)eier 0.995 03 0.976
5(0)+[1) = 5(0)=[1))ee> 0.973
5(00=[1) = 5((0)+[1))ees 0.973
0y — |0yeiet 0.997 0.6 0.975
[1)— —|1)efe2 0.997
£(0)+[1) = £(0)=[1))e’*> 0.975
(00=[1) = 5(0)+[1))efe+ 0.975
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FIG. 3. Accuracy of the Hadamard transform as a function of the initial qubit state for the pulses optimized for (a) transitions (22) and (23), (b) transitions

(24) and (25), and (c) transitions (22), (23), and (25).

P=1 everywhere in the (a,6) space. Note that the phase
difference Ag is very small after such a phase-constrained
optimization and the gate fidelity is high (see Table II).

C. Hadamard transform

The Hadamard gate creates the equal probability super-
position states out of the qubit eigenstates:

Had|0) — 5(/0) + 1)),

Had|1) — 5(|0) - [1)).

This transform, when applied to a qubit in an arbitrary initial
state (7), should give us

Had(Val0) + V1= ae|1)) — S(a+ VT = ae)[0)
+L(a-1-ae|1).
(21)

As for the other gates discussed above, the two-transition
optimization can be based either on the pure initial eigen-
states:

10y — 5(10) + [1))e’, (22)

1) — £(0) = 1), @ # ¢, (23)
or, on the superposition initial states:

5(10) +[1) — [0)e'®: (24)

510 = 1) = e, o) # @s. (25)

When the pulse optimized for transitions (22) and (23), or
alternatively (24) and (25), is analytically “applied” to a qu-
bit in an arbitrary initial state (7) and the transfer probabili-
ties P(«) and P(«, 6) are computed for the Hadamard gate as
we did it for the gate NOT, it appears that the expressions for
P(a) and P(«, 6) are again equivalent to formulas (10) and
(14), respectively. Since Egs. (10) and (14) are valid for all
three major gates we suggest that these expressions are gen-
eral. The rigorous proof of this postulate will be explored in
the future.

The results of the OCT pulse optimizations for the Had-
amard transform are given in Fig. 3 and Table III. They are
qualitatively similar to the results obtained for the gates NOT
and 7 rotation. Here we observed, again, that the pulses op-
timized for two transitions with arbitrary phases [either (22)
and (23) or (24) and (25)] do not perform the desired trans-
formation if the initial qubit state is changed [Figs. 3(a) and
3(b)]. However, the phase-constrained optimization with
three transitions included: (22), (23), and (25), gives us a
pulse characterized by a practically flat P(«, 6) shown in Fig.
3(c). Such a pulse performs accurate Hadamard transform on
any initial state of the qubit. Also, Table III shows that opti-
mization of four transitions simultaneously gives a little
more accurate pulse.

For the three gates studied here the phase difference Ag
is dramatically reduced in the phase-constrained optimiza-
tion compared to the unconstrained one. However, in the
case of the Hadamard gate the residual Agp=10° is still ob-
served in the numerical results. Analysis has shown that the
reason for not obtaining the perfect Ap=0 is related to the
fact that the probability transfer is also not perfect (though it
is very high). Indeed, in order to derive the equality ¢3=¢,
=@, from Egs. (4)—(6) we had to assume that a complete

TABLE III. Summary of optimization results for the Hadamard gate.

Transitions optimized P Ag (deg) F
10)— 5(|0)+[1))ee! 0.999 96.1 0.446
[1)— 5(0)=[1))ee2 0.999
5(0)+[1) —[0)e’s 0.999 95.7 0.448
5(0)=[1) = [1)efes 0.999
10)— 5(0)+[1))efer 0.996 13.8 0.982
1) = 5(|0)=[1))ee2 0.996
5(0)=[1) = [1)efes 0.985
10)— 5(0)+[1))efer 0.995 6.3 0.992
1) = 5(0)=[1))ee2 0.995
5(0)+[1) —[0)ees 0.996
5(0)=[1) = [1)efes 0.996
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transfer of probability is achieved by the laser pulse. In prac-
tice, however, small deviations in the probability transfer
lead to some residual phase differences as well. This should
cause no problem for the molecules that can be efficiently
controlled.’

lll. CONCLUSIONS

We carried out very detailed OCT studies of the gates
NOT, 7 rotation, and the Hadamard transform in the vibra-
tional qubit with the focus on understanding how the phases
of the optimized transitions affect the gate accuracy. We
demonstrated that when the laser pulse is optimized for only
two transitions in the qubit, the gate accuracy should be
viewed as a function of three variables: a and 6, which de-
fine the initial qubit state, and A¢, which represents the
phase difference imposed by the pulse. We showed that if the
A is large (unconstrained) then the high quality of the pulse
optimization achieved with the OCT algorithm is meaningful
only in the close vicinities of the two initial qubit states used
in the pulse optimization procedure. For other initial qubit
states the gate accuracy can be significantly lower which
means that such a laser pulse does not represent a truly uni-
versal quantum gate. We also confirmed the result of Ref. 7.
Namely, we observed that simultaneous optimization of three
transitions in the qubit allowed to constrain phases (provided
the transition probabilities are high). We found that such a
phase-constrained optimization produces laser pulses charac-
terized by a small Ae, consistently high accuracy, and a
weak dependence on the initial qubit state. One of the pos-
sible future research directions is to search for alternative

J. Chem. Phys. 125, 024105 (2006)

direct ways of incorporating the efficient phase control into
the OCT pulse optimization procedure.
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