Structural basis of substrate selectivity in urea and guanidine carboxylase enzymes.
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Figure 1: Structural comparison of urea (left) and guanidine (right.)
Urea is the primary nitrogenous waste product in mammalian cells. The closely
related guanidine [Figure 1] is not a common metabolite, but it is a component of
many compounds entering the environment. The environmental biodegradation of
guanidine was previously unknown

While investigating an unidentified class of riboswitches in 2017, the Breaker lab
discovered that translation of genes encoding for a urea carboxylase increased with
the presence of free guanidine in the cell. They were able to show that these
carboxylases react more readily with guanidine than they do with urea [Figure 2].
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Figure 2: Kinetics of ATP cleavage by Oleomonas sagarenensis urea carboxylase in the
presence of urea and guanidine (Nelson et.al, 2017).

To verify the proposed pathway, the St. Maurice Lab sought to confirm that
guanidine could be decomposed into usable nitrogen. Upon failing to identify a
product, bioinformatics revealed two unidentified protein sequences in the GC
operon, later determined to be subunits of a heteromeric carboxyguanidine
deiminase that converts carboxyguanidine to allophanate [Figure 3].
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Figure 3: Kinetics of Pseudomonas syringae guanidine carboxylase in the presence and absence of
carboxyguanidine deiminase (CgdAB, labeled UAAP1/2) and allophanate hydrolase for guanidine and
urea (left.) Enzyme activity in the presence of guanidine increases drastically with the addition of
CgdAB and again with the addition of allophanate hydrolase, showing that CgdAB converts
carboxyguanidine into allophanate. The full pathway from guanidine to ammonia is shown on the right
(Schneider et. al, 2019).

There is clear phylogenetic evidence for evolutionary divergence between UC and
GC. Guanidine carboxylases always colocalize with CgdAB and almost always contain
an aspartate at the equivalent to position 705 in PsGC. Urea carboxylases contain an
asparagine in the corresponding location and do not colocalize with CgdAB,
suggesting that this residue likely contributes to substrate selectivity [Figure 4].
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Figure 4: Phylogenetic tree of UC and GC enzymes (left) and co-occurrence of aspartate and asparagine
residues in the D705 position with CgdAB (right). Presumably, enzymes with an aspartate are guanidine
carboxylases and those with an asparagine are urea carboxylases (Schneider et al, 2019).
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Future Studies

We are actively developing an assay to kinetically isolate the CT domain of urea and guanidine carboxylases, based on an
assay used by the St. Maurice lab for pyruvate carboxylase [Figure 7].
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Figure 7: Assay to kinetically isolate the CT domain of pyruvate carboxylase measuring the decarboxylation
of oxaloacetate to pyruvate (Lietzan et al, 2014), and the proposed corresponding assay to kinetically isolate
the CT domain of urea and guanidine carboxylases by measuring the decarboxylation of allophanate to urea.

Although the aspartate and asparagine residues at position 705 are the most prominent difference between urea and guanidine
carboxylases, three other residues in the active site were identified also differ between UC and GC enzymes [Figure 8].
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PsGC KIUC Residue CaUC Residue | ScUC Residue | Consurf
Residue Conservation Score
Gly 1027 Ser 1633 Ser 1616 Ser 1637 0.852 (A,G,S,P)

Val 986 Cys 1591 Cys 1577 Cys 1596 0.644 (F,|,AL,C,V)
Asp 705 Asn 1330 Asn 1319 Asn 1335 0.945 (N,S,D)
Tyr 981 Phe 1586 Phe 1570 Phe 1591 0.821 (,Y,W,F)

1633 Asn.__
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Figure 8: Structure of the active site of urea carboxylase, where darker colors indicate the most conserved
residues. The four residues circled and highlighted in the table differ between GC and UC.

Mutagenesis will be performed on each of the residues highlighted in Figure 8, including different combinations of those
residues. Mutant enzymes will be analyzed with the CT domain assay [Figure 7] along with other standard assays to gain insight
into the structural basis of substrate selectivity in UC and GC enzymes.

Applications

1. Guanidine is a usable nitrogen source for many bacteria in nature.

2. Metformin, the fourth most prescribed drug in the world, is a biguanide that treats type-Il diabetes. Currently, it pollutes
the environment via wastewater and cannot be decomposed into safe derivatives. A GC reaction may be used to clean up
metformin waste.

3. Nitroguanidine, a toxic derivative of guanidine released into the environment during the combustion of many military
weapons, may be converted to clean nitrogen in a guanidine carboxylase centered reaction.

4. CgdAB is a member of a largely unidentified and unstudied family of enzymes called DUF1989. Further studies on CgdAB
may provide valuable information about working with and studying these enzymes.

Substrate Selectivity of PsGC D705N
Hypothesis

Mutating the aspartate residue in the D705 position of Pseudomonas syringae
guanidine carboxylase will alter substrate selectivity so that the enzyme becomes
preferential to urea over guanidine.

Methods

PCR-based site-directed mutagenesis was performed on the wild type PsGCin a
PTXB1 E. coli expression vector to change the aspartate at position 705 to an
asparagine. The mutated plasmid was transformed into TOP10 competent E. coli
cells and the DNA sequence was confirmed. The pTXB1 plasmid encoding PsGC
D705N was transformed into BL21(DE3) E. coli cells for protein expression, and the
protein was purified using a standard protocol.

The activity of wild type and D705N PsGC was assayed by measuring ATP cleavage in
the presence of urea or guanidine [Figure 5].
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Figure 5: Schematic of an ATP cleavage assay for UC and GC using a PK/LDH enzyme coupled reaction.
Results
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Figure 6: Kinetics of wild type and D705N Pseudomonas syringae guanidine
carboxylases in the presence of guanidine and urea.

While the data clearly shows that an asparagine in the D705 position decreases the
enzyme’s preference for guanidine, it does not make the enzyme preferential
toward urea [Figure 6]. The hypothesis that the residue in the D705 position is the
determining factor in distinguishing guanidine and urea carboxylases must be
rejected.
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